Using a clonal culture system, we investigated the lymphohematopoietic effects of recombinant interleukin-7 (IL-7) obtained from conditioned media of transfected COS 1 cells. IL-7 alone acted on murine bone marrow cells and supported the formation of B-cell colonies. These colony cells were positive for B220, and some of them were also found to have either IgM or Thy-1. B220+, IgM- cells, but not B220- cells sorted from fresh bone marrow cells were able to form B cell colonies in the presence of IL-7. Thus, IL-7 supported the differentiation of B220+, IgM- cells to B220+, IgM+ cells. B220+, IgM+ cells did not proliferate in the presence of IL-7. IL-7 did not affect the myeloid colony formation supported by IL-3, IL-5, IL-6, granulocyte macrophage colony stimulating factor (GM-CSF), and G-CSF. On the other hand, lymphocyte colony formation was not affected by IL-2, IL-3, IL-4, IL-5, IL-6, GM-CSF, or G-CSF. Interestingly, IL-1 alpha inhibited IL-7- induced B cell colony formation in a dose-dependent manner, while the same concentration of IL-1 alpha enhanced the myeloid colony formation by IL-3. This reciprocal effect of IL-1 alpha may act on hematopoietic progenitor cells without accessory cells. These data show that IL-7 is a B cell growth factor and that IL-1 alpha may play an important role in differentiation of myeloid and lymphoid lineages.

This content is only available as a PDF.
Sign in via your Institution