A family comprising three patients (a mother and two children) with mild hereditary elliptocytosis was studied. Each patient had prominent elliptocytosis, reduced red cell deformability, and normal erythrocyte thermal sensitivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the erythrocyte membranes in each patient showed decreased levels of band 4.1 (approximately half of the normal value) and the presence of an additional band migrating below protein band 4.2. This additional band was shown to derive from protein 4.1. Comparative partial proteolytic mapping of protein 4.1 and the additional band revealed a number of common peptides. Enzyme-linked immunoelectrotransfer blots of the patients' erythrocyte membranes using a monoclonal antibody to protein 4.1 revealed that, in addition to protein 4.1, two other bands below protein 4.2 were stained; one of these bands migrated in the same position as the additional band detected in the Coomassie Blue-stained gels. Immunoblotting of the patients' whole cells using the antibody to protein 4.1 revealed that this altered band 4.1 occurred as such in the intact red cell. SDS-PAGE of protein 4.1 purified from one patient showed the presence of two lower molecular weight bands below protein 4.1; the lower band migrated in the same position as the additional band found on SDS-PAGE of the patients' erythrocyte membranes. The patient's purified protein 4.1 displayed a decrease of about 40% in the binding activity with crude spectrin extracted from normal controls. Spectrin-spectrin interactions were normal in the three patients. The additional band present in the patients' red cell membranes probably represents a proteolytic degradation product. This alteration, present both in whole cells and isolated membranes, might affect the intact cells in vivo. We suggest that the patients' erythrocyte membrane instability may be related to the presence of an abnormal protein 4.1 whose modulatory influence on the spectrin-actin interaction in the skeleton is defective.

This content is only available as a PDF.
Sign in via your Institution