Abstract

Platelets are dynamic cells that perform vital roles both in thrombosis and in immune regulation. Platelets are activated through well described signaling pathways after injury to the vascular wall to prevent excess bleeding and initiate vascular repair. However, platelet functions extend beyond this initial physical phase of platelet activation through their expression and secretion of angiogenic factors and immune mediators that initiate wound healing and recruit leukocytes to prevent infection. Not only do activated platelets induce inflammation and vascular repair but circulating resting platelets maintain vascular integrity and immune homeostasis. Furthermore, many studies have shown that platelets are not homogenous, demonstrating transcriptomic and proteomic differences that associate with platelet phenotypes and functions in multiple disease states. Platelets are produced by megakaryocytes that are found not only in the bone marrow but also in the lungs and spleen. Megakaryocytes within the bone marrow are heterogeneous, which may contribute to platelet heterogeneity. In addition, unlike the megakaryocytes in other tissues, lung megakaryocytes are immune differentiated and proportionately produce more platelets at times of increased demand, perhaps adding to the platelet heterogeneity in disease contexts. In this review, we will discuss the underlying mechanisms that may lead to the platelet heterogeneity that impact both health maintenance and disease.

1.
Morrell
CN
,
Pariser
DN
,
Hilt
ZT
,
Vega Ocasio
D
.
The platelet napoleon complex-small cells, but big immune regulatory functions
.
Annu Rev Immunol
.
2019
;
37
:
125
-
144
.
2.
Morrell
CN
,
Aggrey
AA
,
Chapman
LM
,
Modjeski
KL
.
Emerging roles for platelets as immune and inflammatory cells
.
Blood
.
2014
;
123
(
18
):
2759
-
2767
.
3.
Shi
G
,
Field
DJ
,
Ko
KA
, et al
.
Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection
.
J Clin Invest
.
2014
;
124
(
2
):
543
-
552
.
4.
Hilt
ZT
,
Ture
SK
,
Mohan
A
,
Arne
A
,
Morrell
CN
.
Platelet-derived β2m regulates age related monocyte/macrophage functions
.
Aging (Albany NY)
.
2019
;
11
(
24
):
11955
-
11974
.
5.
Cloutier
N
,
Paré
A
,
Farndale
RW
, et al
.
Platelets can enhance vascular permeability
.
Blood
.
2012
;
120
(
6
):
1334
-
1343
.
6.
Hilt
ZT
,
Pariser
DN
,
Ture
SK
, et al
.
Platelet-derived β2M regulates monocyte inflammatory responses
.
JCI insight
.
2019
;
4
(
5
):
e122943
.
7.
Fortmann
SD
,
Patton
MJ
,
Frey
BF
, et al
.
Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19
.
Blood Adv
.
2023
;
7
(
15
):
4200
-
4214
.
8.
Stephenson
E
,
Reynolds
G
,
Botting
RA
, et al
.
Single-cell multi-omics analysis of the immune response in COVID-19
.
Nat Med
.
2021
;
27
(
5
):
904
-
916
.
9.
Livada
AC
,
McGrath
KE
,
Malloy
MW
, et al
.
Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models
.
J Clin Invest
.
2024
;
134
(
22
):
e181111
.
10.
Pariser
DN
,
Hilt
ZT
,
Ture
SK
, et al
.
Lung megakaryocytes are immune modulatory cells
.
J Clin Invest
.
2021
;
131
(
1
):
e137377
.
11.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature
.
2017
;
544
(
7648
):
105
-
109
.
12.
Conrad
C
,
Magnen
M
,
Tsui
J
, et al
.
Decoding functional hematopoietic progenitor cells in the adult human lung
.
Blood
.
2025
;
145
(
18
):
1975
-
1986
.
13.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
14.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
15.
Beaudin
AE
,
Boyer
SW
,
Forsberg
EC
.
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells
.
Exp Hematol
.
2014
;
42
(
3
):
218
-
229.e4
.
16.
Sun
S
,
Jin
C
,
Si
J
, et al
.
Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis
.
Blood
.
2021
;
138
(
14
):
1211
-
1224
.
17.
Zufferey
A
,
Speck
ER
,
Machlus
KR
, et al
.
Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets
.
Blood Adv
.
2017
;
1
(
20
):
1773
-
1785
.
18.
Guo
L
,
Shen
S
,
Rowley
JW
, et al
.
Platelet MHC class I mediates CD8+ T-cell suppression during sepsis
.
Blood
.
2021
;
138
(
5
):
401
-
416
.
19.
Middleton
EA
,
Rowley
JW
,
Campbell
RA
, et al
.
Sepsis alters the transcriptional and translational landscape of human and murine platelets
.
Blood
.
2019
;
134
(
12
):
911
-
923
.
20.
Denis
MM
,
Tolley
ND
,
Bunting
M
, et al
.
Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets
.
Cell
.
2005
;
122
(
3
):
379
-
391
.
21.
Poscablo
DM
,
Worthington
AK
,
Smith-Berdan
S
, et al
.
An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis
.
Cell
.
2024
;
187
(
12
):
3090
-
3107.e21
.
22.
Anjum
A
,
Mader
M
,
Mahameed
S
, et al
.
Aging platelets shift their hemostatic properties to inflammatory functions
.
Blood
.
2025
;
145
(
14
):
1568
-
1582
.
23.
Haas
S
,
Trumpp
A
,
Milsom
MD
.
Causes and consequences of hematopoietic stem cell heterogeneity
.
Cell Stem Cell
.
2018
;
22
(
5
):
627
-
638
.
24.
Liu
Z
,
Wang
J
,
Ma
Y
, et al
.
Early megakaryocyte lineage-committed progenitors in adult mouse bone marrow
.
Blood Sci
.
2024
;
6
(
2
):
e00187
.
25.
Li
JJ
,
Liu
J
,
Li
YE
, et al
.
Differentiation route determines the functional outputs of adult megakaryopoiesis
.
Immunity
.
2024
;
57
(
3
):
478
-
494.e6
.
26.
Carrelha
J
,
Mazzi
S
,
Winroth
A
, et al
.
Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells
.
Nat Immunol
.
2024
;
25
(
6
):
1007
-
1019
.
27.
Meng
Y
,
Carrelha
J
,
Drissen
R
, et al
.
Epigenetic programming defines haematopoietic stem cell fate restriction
.
Nat Cell Biol
.
2023
;
25
(
6
):
812
-
822
.
28.
Beaudin
AE
,
Boyer
SW
,
Perez-Cunningham
J
, et al
.
A transient developmental hematopoietic stem cell gives rise to innate-like B and T cells
.
Cell Stem Cell
.
2016
;
19
(
6
):
768
-
783
.
29.
Boyer
SW
,
Schroeder
AV
,
Smith-Berdan
S
,
Forsberg
EC
.
All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells
.
Cell Stem Cell
.
2011
;
9
(
1
):
64
-
73
.
30.
Nishikii
H
,
Kanazawa
Y
,
Umemoto
T
, et al
.
Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes
.
Stem Cells
.
2015
;
33
(
7
):
2196
-
2207
.
31.
Prins
D
,
Park
HJ
,
Watcham
S
, et al
.
The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production
.
Sci Adv
.
2020
;
6
(
48
):
eabd3139
.
32.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native haematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
33.
Gleerup
G
,
Winther
K
.
The effect of ageing on platelet function and fibrinolytic activity
.
Angiology
.
1995
;
46
(
8
):
715
-
718
.
34.
O'Donnell
CJ
,
Larson
MG
,
Feng
D
, et al
.
Genetic and environmental contributions to platelet aggregation: the Framingham heart study
.
Circulation
.
2001
;
103
(
25
):
3051
-
3056
.
35.
Jain
K
,
Tyagi
T
,
Patell
K
, et al
.
Age associated non-linear regulation of redox homeostasis in the anucleate platelet: Implications for CVD risk patients
.
EBioMedicine
.
2019
;
44
:
28
-
40
.
36.
Davenport
P
,
Sola-Visner
M
.
Platelets in the neonate: not just a small adult
.
Res Pract Thromb Haemost
.
2022
;
6
(
3
):
e12719
.
37.
Tober
J
,
Koniski
A
,
McGrath
KE
, et al
.
The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis
.
Blood
.
2007
;
109
(
4
):
1433
-
1441
.
38.
Ferrer-Marín
F
,
Sola-Visner
M
.
Neonatal platelet physiology and implications for transfusion
.
Platelets
.
2022
;
33
(
1
):
14
-
22
.
39.
Stolla
MC
,
Catherman
SC
,
Kingsley
PD
, et al
.
Lin28b regulates age-dependent differences in murine platelet function
.
Blood Adv
.
2019
;
3
(
1
):
72
-
82
.
40.
Maurya
P
,
Ture
SK
,
Li
C
, et al
.
Transfusion of adult, but not neonatal, platelets promotes monocyte trafficking in neonatal mice
.
Arterioscler Thromb Vasc Biol
.
2023
;
43
(
6
):
873
-
885
.
41.
Thom
CS
,
Davenport
P
,
Fazelinia
H
, et al
.
Quantitative label-free mass spectrometry reveals content and signaling differences between neonatal and adult platelets
.
J Thromb Haemost
.
2024
;
22
(
5
):
1447
-
1462
.
42.
Davenport
P
,
Fan
HH
,
Nolton
E
, et al
.
Platelet transfusions in a murine model of neonatal polymicrobial sepsis: divergent effects on inflammation and mortality
.
Transfusion
.
2022
;
62
(
6
):
1177
-
1187
.
43.
Baer
VL
,
Lambert
DK
,
Henry
E
,
Snow
GL
,
Sola-Visner
MC
,
Christensen
RD
.
Do platelet transfusions in the NICU adversely affect survival? Analysis of 1600 thrombocytopenic neonates in a multihospital healthcare system
.
J Perinatol
.
2007
;
27
(
12
):
790
-
796
.
44.
Curley
A
,
Stanworth
SJ
,
Willoughby
K
, et al
.
Randomized trial of platelet-transfusion thresholds in neonates
.
N Engl J Med
.
2019
;
380
(
3
):
242
-
251
.
45.
Yeung
AK
,
Villacorta-Martin
C
,
Hon
S
,
Rock
JR
,
Murphy
GJ
.
Lung megakaryocytes display distinct transcriptional and phenotypic properties
.
Blood Adv
.
2020
;
4
(
24
):
6204
-
6217
.
46.
Shen
Z
,
Du
W
,
Perkins
C
, et al
.
Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms
.
Cell Rep Med
.
2021
;
2
(
10
):
100425
.
47.
Kelliher
S
,
Gamba
S
,
Weiss
L
, et al
.
Platelet proteomic profiling reveals potential mediators of immunothrombosis and proteostasis in myeloproliferative neoplasms
.
Blood Adv
.
2024
;
8
(
16
):
4276
-
4280
.
48.
Balduini
A
,
Badalucco
S
,
Pugliano
MT
, et al
.
In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes
.
PlOs One
.
2011
;
6
(
6
):
e21015
.
49.
Guy
A
,
Garcia
G
,
Gourdou-Latyszenok
V
, et al
.
Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms
.
J Thromb Haemost
.
2024
;
22
(
1
):
172
-
187
.
50.
Kaufman
RM
,
Airo
R
,
Pollack
S
,
Crosby
WH
,
Doberneck
R
.
Origin of pulmonary megakaryocytes
.
Blood
.
1965
;
25
:
767
-
775
.
51.
Kaufman
RM
,
Airo
R
,
Pollack
S
,
Crosby
WH
.
Circulating megakaryocytes and platelet release in the lung
.
Blood
.
1965
;
26
(
6
):
720
-
731
.
52.
Sharnoff
JG
.
Increased pulmonary megakaryocytes; probable role in postoperative thromboembolism
.
J Am Med Assoc
.
1959
;
169
(
7
):
688
-
691
.
53.
Sharnoff
JG
,
Kim
ES
.
Evaluation of pulmonary megakaryocytes
.
AMA Arch Pathol
.
1958
;
66
(
2
):
176
-
182
.
54.
Sharnoff
JG
,
Kim
ES
.
Pulmonary megakaryocyte studies in rabbits
.
AMA Arch Pathol
.
1958
;
66
(
3
):
340
-
343
.
55.
Qiu
J
,
Ma
J
,
Dong
Z
, et al
.
Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution
.
Nat Commun
.
2024
;
15
(
1
):
7396
.
56.
Jenkins
MM
,
Bachus
H
,
Botta
D
, et al
.
Lung dendritic cells migrate to the spleen to prime long-lived TCF1hi memory CD8+ T cell precursors after influenza infection
.
Sci Immunol
.
2021
;
6
(
63
):
eabg6895
.
57.
Pedersen
NT
,
Petersen
S
.
Megakaryocytes in the foetal circulation and in cubital venous blood in the mother before and after delivery
.
Scand J Haematol
.
1980
;
25
(
1
):
5
-
11
.
58.
Livada
A
,
McGrath
KE
,
Malloy
M
, et al
.
Lung megakaryocytes are long-lived, arise from Flt3-negative bone marrow cells, and contribute to platelet recovery in thrombocytopenia
.
bioRxiv
.
Preprint posted online 14 April 2024
.
59.
Li
C
,
Ture
SK
,
Nieves-Lopez
B
, et al
.
Thrombocytopenia independently leads to changes in monocyte immune function
.
Circ Res
.
2024
;
134
(
8
):
970
-
986
.
60.
Chapman
LM
,
Ture
SK
,
Field
DJ
,
Morrell
CN
.
miR-451 limits CD4+ T cell proliferative responses to infection in mice
.
Immunol Res
.
2017
;
65
(
4
):
828
-
840
.
61.
Blick-Nitko
SK
,
Ture
SK
,
Schafer
XL
, et al
.
Platelet Ido1 expression is induced during Plasmodium yoelii infection, altering plasma tryptophan metabolites
.
Blood Adv
.
2024
;
8
(
22
):
5814
-
5825
.
62.
Valet
C
,
Magnen
M
,
Qiu
L
, et al
.
Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression
.
J Clin Invest
.
2022
;
132
(
7
):
e153920
.
63.
Avanzini
MA
,
Abbonante
V
,
Catarsi
P
, et al
.
The spleen of patients with myelofibrosis harbors defective mesenchymal stromal cells
.
Am J Hematol
.
2018
;
93
(
5
):
615
-
622
.
64.
Sprague
DL
,
Elzey
BD
,
Crist
SA
,
Waldschmidt
TJ
,
Jensen
RJ
,
Ratliff
TL
.
Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles
.
Blood
.
2008
;
111
(
10
):
5028
-
5036
.
65.
Elzey
BD
,
Grant
JF
,
Sinn
HW
,
Nieswandt
B
,
Waldschmidt
TJ
,
Ratliff
TL
.
Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation
.
J Leukoc Biol
.
2005
;
78
(
1
):
80
-
84
.
66.
Aggrey
AA
,
Srivastava
K
,
Ture
S
,
Field
DJ
,
Morrell
CN
.
Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria
.
J Immunol
.
2013
;
190
(
9
):
4685
-
4691
.
67.
Hottz
ED
,
Lopes
JF
,
Freitas
C
, et al
.
Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation
.
Blood
.
2013
;
122
(
20
):
3405
-
3414
.
68.
Vogel
S
,
Arora
T
,
Wang
X
, et al
.
The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase
.
Blood Adv
.
2018
;
2
(
20
):
2672
-
2680
.
69.
Su
M
,
Chen
C
,
Li
S
, et al
.
Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis
.
Nat Cardiovasc Res
.
2022
;
1
(
8
):
732
-
747
.
70.
Cameron
SJ
,
Ture
SK
,
Mickelsen
D
, et al
.
Platelet extracellular regulated protein kinase 5 is a redox switch and triggers maladaptive platelet responses and myocardial infarct expansion
.
Circulation
.
2015
;
132
(
1
):
47
-
58
.
71.
Cameron
SJ
,
Mix
DS
,
Ture
SK
, et al
.
Hypoxia and ischemia promote a maladaptive platelet phenotype
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
7
):
1594
-
1606
.
72.
Clancy
L
,
Beaulieu
LM
,
Tanriverdi
K
,
Freedman
JE
.
The role of RNA uptake in platelet heterogeneity
.
Thromb Haemost
.
2017
;
117
(
5
):
948
-
961
.
73.
Blair
TA
,
Michelson
AD
,
Frelinger
AL
.
Mass cytometry reveals distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins in Glanzmann thrombasthenia
.
Sci Rep
.
2018
;
8
(
1
):
10300
.
74.
Zivkovic
M
,
Shamorkina
TM
,
Blaauwgeers
MW
, et al
.
Proteomic analysis indicates lower abundance of platelet alpha-granule proteins in Glanzmann thrombasthenia
.
J Thromb Haemost
.
2025
;
23
(
7
):
2284
-
2296
.
You do not currently have access to this content.
Sign in via your Institution