• circFUT8 promotes PPF in vitro and in vivo.

  • circFUT8 stabilizes TNS1 mRNA via IGF2BP2 to regulate F-actin assembly and organization.

Abstract

During thrombopoiesis, megakaryocytes (MKs) transform their cytoplasm into proplatelets through complex cytoskeletal rearrangements. The shear force of blood flow releases newly formed platelets from the proplatelets into the bloodstream. Defects at any phase of this process can impair platelet production. Although various noncoding RNAs have been identified as regulators of platelet production, the regulatory mechanisms of thrombopoiesis remain to be further investigated. Despite the high abundance of circular RNAs (circRNAs) in platelets, their role in platelet production is unclear. In this study, using RNA sequencing and bioinformatics analysis, we identified a circular RNA from the FUT8 gene (circFUT8) as a novel circRNA that increases as hematopoietic stem cells from human umbilical cord blood differentiate into mature MKs, showing high expression in these mature cells. Knockdown of circFUT8 led to diminished proplatelet formation (PPF) and abnormal demarcation membrane system formation in human cultured MKs. In addition, inhibition of circFut8 in vivo decreased murine platelet counts. circFut8 deficiency reduced the number of MKs in contact with sinusoids. Mechanistically, we revealed that circFUT8 interacts with insulin-like growth factor 2 messenger RNA (mRNA)–binding protein 2 to stabilize tensin-1 (TNS1) mRNA in an m6A-dependent manner. In human cultured MKs, TNS1 knockdown resulted in defective filamentous actin polymerization and assembly, impaired spreading on extracellular matrix proteins, and decreased PPF. Taken together, our research reveals the crucial functions of circRNAs in platelet production and has significant implications for the development of therapeutic strategies for thrombocytopenia and bleeding disorders.

1.
van der Meijden
PEJ
,
Heemskerk
JWM
.
Platelet biology and functions: new concepts and clinical perspectives
.
Nat Rev Cardiol
.
2019
;
16
(
3
):
166
-
179
.
2.
Vulliamy
P
,
Armstrong
PC
.
Platelets in hemostasis, thrombosis, and inflammation after major trauma
.
Arterioscler Thromb Vasc Biol
.
2024
;
44
(
3
):
545
-
557
.
3.
Machlus
KR
,
Italiano
JE
.
The incredible journey: from megakaryocyte development to platelet formation
.
J Cell Biol
.
2013
;
201
(
6
):
785
-
796
.
4.
Asquith
NL
,
Carminita
E
,
Camacho
V
, et al
.
The bone marrow is the primary site of thrombopoiesis
.
Blood
.
2024
;
143
(
3
):
272
-
278
.
5.
Bluteau
D
,
Lordier
L
,
Di Stefano
A
, et al
.
Regulation of megakaryocyte maturation and platelet formation
.
J Thromb Haemost
.
2009
;
7
(
suppl 1
):
227
-
234
.
6.
Noetzli
LJ
,
French
SL
,
Machlus
KR
.
New insights into the differentiation of megakaryocytes from hematopoietic progenitors
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
7
):
1288
-
1300
.
7.
Ghalloussi
D
,
Dhenge
A
,
Bergmeier
W
.
New insights into cytoskeletal remodeling during platelet production
.
J Thromb Haemost
.
2019
;
17
(
9
):
1430
-
1439
.
8.
Eto
K
,
Kunishima
S
.
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis
.
Blood
.
2016
;
127
(
10
):
1234
-
1241
.
9.
Bianchi
E
,
Norfo
R
,
Pennucci
V
,
Zini
R
,
Manfredini
R
.
Genomic landscape of megakaryopoiesis and platelet function defects
.
Blood
.
2016
;
127
(
10
):
1249
-
1259
.
10.
Noh
JY
.
Megakaryopoiesis and platelet biology: roles of transcription factors and emerging clinical implications
.
Int J Mol Sci
.
2021
;
22
(
17
):
9615
.
11.
Bluteau
D
,
Glembotsky
AC
,
Raimbault
A
, et al
.
Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression
.
Blood
.
2012
;
120
(
13
):
2708
-
2718
.
12.
Lecine
P
,
Italiano
JE
,
Kim
SW
,
Villeval
JL
,
Shivdasani
RA
.
Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2
.
Blood
.
2000
;
96
(
4
):
1366
-
1373
.
13.
Tiwari
S
,
Italiano
JE
,
Barral
DC
, et al
.
A role for Rab27b in NF-E2-dependent pathways of platelet formation
.
Blood
.
2003
;
102
(
12
):
3970
-
3979
.
14.
Heazlewood
SY
,
Ahmad
T
,
Mohenska
M
, et al
.
The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production
.
Blood
.
2022
;
139
(
9
):
1359
-
1373
.
15.
Ver Donck
F
,
Ramaekers
K
,
Thys
C
, et al
.
Ribosome dysfunction underlies SLFN14-related thrombocytopenia
.
Blood
.
2023
;
141
(
18
):
2261
-
2274
.
16.
Tran
NT
,
Su
H
,
Khodadadi-Jamayran
A
, et al
.
The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation
.
EMBO Rep
.
2016
;
17
(
6
):
887
-
900
.
17.
Navarro
F
,
Gutman
D
,
Meire
E
, et al
.
miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53
.
Blood
.
2009
;
114
(
10
):
2181
-
2192
.
18.
Qu
M
,
Fang
F
,
Zou
X
, et al
.
miR-125b modulates megakaryocyte maturation by targeting the cell-cycle inhibitor p19INK4D
.
Cell Death Dis
.
2016
;
7
(
10
):
e2430
.
19.
Bhatlekar
S
,
Manne
BK
,
Basak
I
, et al
.
miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin
.
Blood
.
2020
;
136
(
15
):
1760
-
1772
.
20.
Li
W
,
Lv
Y
,
Sun
Y
.
Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP
.
Platelets
.
2023
;
34
(
1
):
2157382
.
21.
Chen
LL
.
The expanding regulatory mechanisms and cellular functions of circular RNAs
.
Nat Rev Mol Cell Biol
.
2020
;
21
(
8
):
475
-
490
.
22.
Liu
CX
,
Chen
LL
.
Circular RNAs: characterization, cellular roles, and applications
.
Cell
.
2022
;
185
(
13
):
2390
. 2034.
23.
Guarnerio
J
,
Zhang
Y
,
Cheloni
G
, et al
.
Intragenic antagonistic roles of protein and circRNA in tumorigenesis
.
Cell Res
.
2019
;
29
(
8
):
628
-
640
.
24.
Liu
CX
,
Li
X
,
Nan
F
, et al
.
Structure and degradation of circular RNAs regulate PKR activation in innate immunity
.
Cell
.
2019
;
177
(
4
):
865
-
880.e21
.
25.
Li
S
,
Li
X
,
Xue
W
, et al
.
Screening for functional circular RNAs using the CRISPR-Cas13 system
.
Nat Methods
.
2021
;
18
(
1
):
51
-
59
.
26.
Xia
P
,
Wang
S
,
Ye
B
, et al
.
A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion
.
Immunity
.
2018
;
48
(
4
):
688
-
701.e7
.
27.
Zhang
D
,
Ni
N
,
Wang
Y
, et al
.
CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression
.
Cell Death Differ
.
2021
;
28
(
1
):
283
-
302
.
28.
Alhasan
AA
,
Izuogu
OG
,
Al-Balool
HH
, et al
.
Circular RNA enrichment in platelets is a signature of transcriptome degradation
.
Blood
.
2016
;
127
(
9
):
e1
-
e11
.
29.
Preußer
C
,
Hung
LH
,
Schneider
T
, et al
.
Selective release of circRNAs in platelet-derived extracellular vesicles
.
J Extracell Vesicles
.
2018
;
7
(
1
):
1424473
.
30.
Nicolet
BP
,
Jansen
SBG
,
Heideveld
E
, et al
.
Circular RNAs exhibit limited evidence for translation, or translation regulation of the mRNA counterpart in terminal hematopoiesis
.
RNA
.
2022
;
28
(
2
):
194
-
209
.
31.
Bhatlekar
S
,
Basak
I
,
Edelstein
LC
, et al
.
Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood
.
Haematologica
.
2019
;
104
(
10
):
2075
-
2083
.
32.
Eckly
A
,
Heijnen
H
,
Pertuy
F
, et al
.
Biogenesis of the demarcation membrane system (DMS) in megakaryocytes
.
Blood
.
2014
;
123
(
6
):
921
-
930
.
33.
Schulze
H
,
Korpal
M
,
Hurov
J
, et al
.
Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis
.
Blood
.
2006
;
107
(
10
):
3868
-
3875
.
34.
Diederichs
S
.
The four dimensions of noncoding RNA conservation
.
Trends Genet
.
2014
;
30
(
4
):
121
-
123
.
35.
Wu
W
,
Ji
P
,
Zhao
F
.
CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes
.
Genome Biol
.
2020
;
21
(
1
):
101
.
36.
Nielsen
AF
,
Bindereif
A
,
Bozzoni
I
, et al
.
Best practice standards for circular RNA research
.
Nat Methods
.
2022
;
19
(
10
):
1208
-
1220
.
37.
Malara
A
,
Balduini
A
.
Megakaryocytes in the lung: guests or ghosts?
.
Blood
.
2024
;
143
(
3
):
192
-
193
.
38.
Geue
S
,
Aurbach
K
,
Manke
MC
, et al
.
Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis
.
Blood
.
2019
;
134
(
21
):
1847
-
1858
.
39.
Dütting
S
,
Gaits-Iacovoni
F
,
Stegner
D
, et al
.
A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis
.
Nat Commun
.
2017
;
8
:
15838
.
40.
Opalinska
JB
,
Bersenev
A
,
Zhang
Z
, et al
.
MicroRNA expression in maturing murine megakaryocytes
.
Blood
.
2010
;
116
(
23
):
e128
-
e138
.
41.
Meng
R
,
Wang
Y
,
Yao
Y
, et al
.
SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models
.
Blood
.
2012
;
120
(
2
):
404
-
414
.
42.
Tolhurst
G
,
Vial
C
,
Léon
C
,
Gachet
C
,
Evans
RJ
,
Mahaut-Smith
MP
.
Interplay between P2Y(1), P2Y(12), and P2X(1) receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling
.
Blood
.
2005
;
106
(
5
):
1644
-
1651
.
43.
Fidler
TP
,
Middleton
EA
,
Rowley
JW
, et al
.
Glucose transporter 3 potentiates degranulation and is required for platelet activation
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
9
):
1628
-
1639
.
44.
Chang
KC
,
Diermeier
SD
,
Yu
AT
, et al
.
MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression
.
Nat Commun
.
2020
;
11
(
1
):
6438
.
45.
Bernau
K
,
Torr
EE
,
Evans
MD
,
Aoki
JK
,
Ngam
CR
,
Sandbo
N
.
Tensin 1 is essential for myofibroblast differentiation and extracellular matrix formation
.
Am J Respir Cell Mol Biol
.
2017
;
56
(
4
):
465
-
476
.
46.
Yang
L
,
Wilusz
JE
,
Chen
LL
.
Biogenesis and regulatory roles of circular RNAs
.
Annu Rev Cell Dev Biol
.
2022
;
38
:
263
-
289
.
47.
Li
JH
,
Liu
S
,
Zhou
H
,
Qu
LH
,
Yang
JH
.
starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
.
Nucleic Acids Res
.
2014
;
42
(
database issue
):
D92
-
D97
.
48.
Chen
Y
,
Yao
L
,
Tang
Y
, et al
.
CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D93
-
D101
.
49.
Pan
X
,
Fang
Y
,
Li
X
,
Yang
Y
,
Shen
HB
.
RBPsuite: RNA-protein binding sites prediction suite based on deep learning
.
BMC Genomics
.
2020
;
21
(
1
):
884
.
50.
Huang
H
,
Weng
H
,
Sun
W
, et al
.
Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation
.
Nat Cell Biol
.
2018
;
20
(
3
):
285
-
295
.
51.
Li
Z
,
Qian
P
,
Shao
W
, et al
.
Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion
.
Cell Res
.
2018
;
28
(
9
):
904
-
917
.
52.
Weng
H
,
Huang
F
,
Yu
Z
, et al
.
The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
12
):
1566
-
1582.e10
.
53.
Fan
W
,
Adebowale
K
,
Váncza
L
, et al
.
Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver
.
Nature
.
2024
;
626
(
7999
):
635
-
642
.
54.
Georgiadou
M
,
Ivaska
J
.
Tensins: bridging AMP-activated protein kinase with integrin activation
.
Trends Cell Biol
.
2017
;
27
(
10
):
703
-
711
.
55.
Wu
ZY
,
Chiu
CL
,
Lo
E
,
Lee
YRJ
,
Yamada
S
,
Lo
SH
.
Hyperactivity of Mek in TNS1 knockouts leads to potential treatments for cystic kidney diseases
.
Cell Death Dis
.
2019
;
10
(
12
):
871
.
56.
Memczak
S
,
Jens
M
,
Elefsinioti
A
, et al
.
Circular RNAs are a large class of animal RNAs with regulatory potency
.
Nature
.
2013
;
495
(
7441
):
333
-
338
.
57.
Piwecka
M
,
Glažar
P
,
Hernandez-Miranda
LR
, et al
.
Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function
.
Science
.
2017
;
357
(
6357
):
eaam8526
.
58.
Bennett
C
,
Lawrence
M
,
Guerrero
JA
, et al
.
CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia
.
Blood
.
2022
;
139
(
14
):
2227
-
2239
.
59.
Mazzi
S
,
Dessen
P
,
Vieira
M
, et al
.
Dual role of EZH2 in megakaryocyte differentiation
.
Blood
.
2021
;
138
(
17
):
1603
-
1614
.
60.
Chen
Q
,
Xin
M
,
Wang
L
, et al
.
Inhibition of LDHA to induce eEF2 release enhances thrombocytopoiesis
.
Blood
.
2022
;
139
(
19
):
2958
-
2971
.
61.
Wang
Y
,
Lv
Y
,
Jiang
X
, et al
.
Long non-coding RNA NORAD regulates megakaryocyte differentiation and proplatelet formation via the DUSP6/ERK signaling pathway
.
Biochem Biophys Res Commun
.
2024
;
715
:
150004
.
62.
Lee
YRJ
,
Yamada
S
,
Lo
SH
.
Phase transition of tensin-1 during the focal adhesion disassembly and cell division
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
15
):
e2303037120
.
63.
Lo
SH
,
Janmey
PA
,
Hartwig
JH
,
Chen
LB
.
Interactions of tensin with actin and identification of its three distinct actin-binding domains
.
J Cell Biol
.
1994
;
125
(
5
):
1067
-
1075
.
64.
Dorsam
RT
,
Kunapuli
SP
.
Central role of the P2Y12 receptor in platelet activation
.
J Clin Invest
.
2004
;
113
(
3
):
340
-
345
.
65.
Wang
L
,
Yi
X
,
Xiao
X
,
Zheng
Q
,
Ma
L
,
Li
B
.
Exosomal miR-628-5p from M1 polarized macrophages hinders m6A modification of circFUT8 to suppress hepatocellular carcinoma progression
.
Cell Mol Biol Lett
.
2022
;
27
(
1
):
106
.
66.
He
Q
,
Yan
D
,
Dong
W
, et al
.
circRNA circFUT8 upregulates Krüpple-like factor 10 to inhibit the metastasis of bladder cancer via sponging miR-570-3p
.
Mol Ther Oncolytics
.
2020
;
16
:
172
-
187
.
67.
Rossi
F
,
Beltran
M
,
Damizia
M
, et al
.
Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity
.
Mol Cell
.
2022
;
82
(
1
):
75
-
89.e9
.
68.
Sun
YM
,
Wang
WT
,
Zeng
ZC
, et al
.
circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression
.
Blood
.
2019
;
134
(
18
):
1533
-
1546
.
69.
Conway
AE
,
Van Nostrand
EL
,
Pratt
GA
, et al
.
Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival
.
Cell Rep
.
2016
;
15
(
3
):
666
-
679
.
70.
Stoskus
M
,
Vaitkeviciene
G
,
Eidukaite
A
,
Griskevicius
L
.
ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia
.
Blood Cells Mol Dis
.
2016
;
57
:
30
-
34
.
71.
Elagib
KE
,
Lu
CH
,
Mosoyan
G
, et al
.
Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition
.
J Clin Invest
.
2017
;
127
(
6
):
2365
-
2377
.
72.
Suo
M
,
Rommelfanger
MK
,
Chen
Y
, et al
.
Age-dependent effects of Igf2bp2 on gene regulation, function, and aging of hematopoietic stem cells in mice
.
Blood
.
2022
;
139
(
17
):
2653
-
2665
.
73.
Yin
R
,
Chang
J
,
Li
Y
, et al
.
Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function
.
Cell Stem Cell
.
2022
;
29
(
1
):
149
-
159.e7
.
74.
Dai
N
,
Zhao
L
,
Wrighting
D
, et al
.
IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins
.
Cell Metab
.
2015
;
21
(
4
):
609
-
621
.
You do not currently have access to this content.
Sign in via your Institution