• ROS produced by monocytes and macrophages are essential to maintain intestinal homeostasis.

  • The wildling model substantially improves preclinical modeling of the complex IBD phenotype in CGD.

Abstract

The controlled development of cellular intestinal immunity in the face of dynamic microbiota emergence constitutes a major challenge in very early life and is a bottleneck for sustained growth and well-being. Early-onset inflammatory bowel disease (IBD) represents an extreme disturbance of intestinal immunity. It is a hallmark and often the first manifestation of chronic granulomatous disease (CGD), caused by inborn defects in the nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) in phagocytes and thus the failure to produce reactive oxygen species (ROS). However, in contrast to the known role of ROS in antimicrobial defense, the mechanisms underlying intestinal immunopathology in CGD remain enigmatic. This is partly due to the incomplete recapitulation of the CGD-IBD phenotype in established mouse models. We found that mice deficient in the NOX2 subunits p47phox or gp91phox showed similar baseline disturbances in lamina propria macrophage differentiation but responded differently to chemically induced colitis. Although p47phox- and gp91phox-deficient mice differed markedly in microbiota composition, crossfostering failed to equalize discrepant IBD phenotypes and microbiota, pointing at extremely early and functionally important microbiota fixation under specific pathogen-free housing conditions. In contrast, neonatal acquisition of a complex wild-mouse microbiota triggered spontaneous IBD, granuloma formation, and secondary sepsis with intestinal pathogens in both NOX2-deficient mouse lines, which was in part dependent on NOX2 in intestinal macrophages. Thus, in experimental CGD, the aberrant development of tissue immunity and microbiota are closely intertwined immediately after birth.

1.
Moghadam
ZM
,
Henneke
P
,
Kolter
J
.
From flies to men: ROS and the NADPH oxidase in phagocytes
.
Front Cell Dev Biol
.
2021
;
9
:
628991
.
2.
Justiz-Vaillant
AA
,
Williams-Persad
AFA
,
Arozarena-Fundora
R
, et al
.
Chronic granulomatous disease (CGD): commonly associated pathogens, diagnosis and treatment
.
Microorganisms
.
2023
;
11
(
9
):
2233
.
3.
Kuijpers
T
,
Lutter
R
.
Inflammation and repeated infections in CGD: two sides of a coin
.
Cell Mol Life Sci
.
2012
;
69
(
1
):
7
-
15
.
4.
Yu
H-H
,
Yang
Y-H
,
Chiang
B-L
.
Chronic granulomatous disease: a comprehensive review
.
Clin Rev Allergy Immunol
.
2021
;
61
(
2
):
101
-
113
.
5.
Marsh
RA
,
Leiding
JW
,
Logan
BR
, et al
.
Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT [published correction appears in J Clin Immunol. 2020;40(8):1211-1213]
.
J Clin Immunol
.
2019
;
39
(
7
):
653
-
667
.
6.
Na
YR
,
Stakenborg
M
,
Seok
SH
,
Matteoli
G
.
Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD
.
Nat Rev Gastroenterol Hepatol
.
2019
;
16
(
9
):
531
-
543
.
7.
Round
JL
,
Mazmanian
SK
.
The gut microbiota shapes intestinal immune responses during health and disease
.
Nat Rev Immunol
.
2009
;
9
(
5
):
313
-
323
.
8.
Schwarzer
M
,
Hermanova
P
,
Srutkova
D
, et al
.
Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy
.
Front Immunol
.
2019
;
10
:
205
.
9.
Kamada
N
,
Núñez
G
.
Regulation of the immune system by the resident intestinal bacteria
.
Gastroenterology
.
2014
;
146
(
6
):
1477
-
1488
.
10.
Lavelle
A
,
Hoffmann
TW
,
Pham
HP
,
Langella
P
,
Guédon
E
,
Sokol
H
.
Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host
.
Microbiome
.
2019
;
7
(
1
):
111
.
11.
Wirtz
S
,
Popp
V
,
Kindermann
M
, et al
.
Chemically induced mouse models of acute and chronic intestinal inflammation
.
Nat Protoc
.
2017
;
12
(
7
):
1295
-
1309
.
12.
Rosshart
SP
,
Herz
J
,
Vassallo
BG
, et al
.
Laboratory mice born to wild mice have natural microbiota and model human immune responses
.
Science
.
2019
;
365
(
6452
):
eaaw4361
.
13.
Kolter
J
,
Feuerstein
R
,
Zeis
P
, et al
.
A subset of skin macrophages contributes to the surveillance and regeneration of local nerves
.
Immunity
.
2019
;
50
(
6
):
1482
-
1497.e7
.
14.
Falcone
EL
,
Abusleme
L
,
Swamydas
M
, et al
.
Colitis susceptibility in p47(phox/) mice is mediated by the microbiome
.
Microbiome
.
2016
;
4
:
13
.
15.
Bain
CC
,
Bravo-Blas
A
,
Scott
CL
, et al
.
Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
.
Nat Immunol
.
2014
;
15
(
10
):
929
-
937
.
16.
Fritsch
SD
,
Sukhbaatar
N
,
Gonzales
K
, et al
.
Metabolic support by macrophages sustains colonic epithelial homeostasis
.
Cell Metab
.
2023
;
35
(
11
):
1931
-
1943.e8
.
17.
Jones
G-R
,
Bain
CC
,
Fenton
TM
, et al
.
Dynamics of colon monocyte and macrophage activation during colitis
.
Front Immunol
.
2018
;
9
:
2764
.
18.
Schridde
A
,
Bain
CC
,
Mayer
JU
, et al
.
Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling
.
Mucosal Immunol
.
2017
;
10
(
6
):
1387
-
1399
.
19.
Hegarty
LM
,
Jones
G-R
,
Bain
CC
.
Macrophages in intestinal homeostasis and inflammatory bowel disease
.
Nat Rev Gastroenterol Hepatol
.
2023
;
20
(
8
):
538
-
553
.
20.
Cooper
HS
,
Murthy
SN
,
Shah
RS
,
Sedergran
DJ
.
Clinicopathologic study of dextran sulfate sodium experimental murine colitis
.
Lab Invest
.
1993
;
69
(
2
):
238
-
249
.
21.
Kim
JJ
,
Shajib
MS
,
Manocha
MM
,
Khan
WI
.
Investigating intestinal inflammation in DSS-induced model of IBD
.
JoVE J
.
2012
(
60
):
e3678
.
22.
Ogawa
H
,
Fukushima
K
,
Naito
H
, et al
.
Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model
.
Inflamm Bowel Dis
.
2003
;
9
(
3
):
162
-
170
.
23.
Pull
SL
,
Doherty
JM
,
Mills
JC
,
Gordon
JI
,
Stappenbeck
TS
.
Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
1
):
99
-
104
.
24.
Bain
CC
,
Scott
CL
,
Uronen-Hansson
H
, et al
.
Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
.
Mucosal Immunol
.
2013
;
6
(
3
):
498
-
510
.
25.
Desalegn
G
,
Pabst
O
.
Inflammation triggers immediate rather than progressive changes in monocyte differentiation in the small intestine
.
Nat Commun
.
2019
;
10
(
1
):
3229
.
26.
Bernardo
D
,
Marin
AC
,
Fernández-Tomé
S
, et al
.
Human intestinal pro-inflammatory CD11chighCCR2+ CX3CR1+ macrophages, but not their tolerogenic CD11c− CCR2− CX3CR1− counterparts, are expanded in inflammatory bowel disease
.
Mucosal Immunol
.
2018
;
11
(
4
):
1114
-
1126
.
27.
Lösslein
AK
,
Lohrmann
F
,
Scheuermann
L
, et al
.
Monocyte progenitors give rise to multinucleated giant cells
.
Nat Commun
.
2021
;
12
(
1
):
2027
.
28.
Ng
LG
,
Liu
Z
,
Kwok
I
,
Ginhoux
F
.
Origin and heterogeneity of tissue myeloid cells: a focus on GMP-derived monocytes and neutrophils
.
Annu Rev Immunol
.
2023
;
41
:
375
-
404
.
29.
Guilliams
M
,
Mildner
A
,
Yona
S
.
Developmental and Functional Heterogeneity of Monocytes
.
Immunity
.
2018
;
49
(
4
):
595
-
613
.
30.
Swann
JW
,
Olson
OC
,
Passegué
E
.
Made to order: emergency myelopoiesis and demand-adapted innate immune cell production
.
Nat Rev Immunol
.
2024
;
24
(
8
):
596
-
613
.
31.
Chiesa
R
,
Wang
J
,
Blok
HJ
, et al
.
Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults
.
Blood, The Journal of the American Society of Hematology
.
2020
;
136
(
10
):
1201
-
1211
.
32.
Delfini
M
,
Stakenborg
N
,
Viola
MF
,
Boeckxstaens
G
.
Macrophages in the gut: masters in multitasking
.
Immunity
.
2022
;
55
(
9
):
1530
-
1548
.
33.
DeJong
EN
,
Surette
MG
,
Bowdish
DM
.
The gut microbiota and unhealthy aging: disentangling cause from consequence
.
Cell Host Microbe
.
2020
;
28
(
2
):
180
-
189
.
34.
Cani
PD
,
Depommier
C
,
Derrien
M
,
Everard
A
,
de Vos
WM
.
Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms
.
Nat Rev Gastroenterol Hepatol
.
2022
;
19
(
10
):
625
-
637
.
35.
Wang
K
,
Wu
W
,
Wang
Q
, et al
.
The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice
.
Front Microbiol
.
2022
;
13
:
932047
.
36.
Macchione
I
,
Lopetuso
LR
,
Ianiro
G
, et al
.
Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders
.
Eur Rev Med Pharmacol Sci
.
2019
;
23
(
18
):
8075
-
8083
.
37.
Nomura
K
,
Ishikawa
D
,
Okahara
K
, et al
.
Bacteroidetes species are correlated with disease activity in ulcerative colitis
.
J Clin Med
.
2021
;
10
(
8
):
1749
.
38.
Kim
SJ
,
Kim
SE
,
Kim
AR
,
Kang
S
,
Park
MY
,
Sung
MK
.
Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice
.
BMC Microbiol
.
2019
;
19
(
1
):
193
.
39.
Hirano
A
,
Umeno
J
,
Okamoto
Y
, et al
.
Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis
.
J Gastroenterol Hepatol
.
2018
;
33
(
9
):
1590
-
1597
.
40.
Berry
D
,
Reinisch
W
.
Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases?
.
Best Pract Res Clin Gastroenterol
.
2013
;
27
(
1
):
47
-
58
.
41.
Chen
Q
,
Nair
S
,
Ruedl
C
.
Microbiota regulates the turnover kinetics of gut macrophages in health and inflammation
.
Life Sci Alliance
.
2022
;
5
(
1
):
e202101178
.
42.
Beura
LK
,
Hamilton
SE
,
Bi
K
, et al
.
Normalizing the environment recapitulates adult human immune traits in laboratory mice
.
Nature
.
2016
;
532
(
7600
):
512
-
516
.
43.
Zigmond
E
,
Varol
C
,
Farache
J
, et al
.
Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
.
Immunity
.
2012
;
37
(
6
):
1076
-
1090
.
44.
Shaw
TN
,
Houston
SA
,
Wemyss
K
, et al
.
Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression
.
J Exp Med
.
2018
;
215
(
6
):
1507
-
1518
.
45.
Bain
CC
,
Schridde
A
.
Origin, differentiation, and function of intestinal macrophages
.
Front Immunol
.
2018
;
9
:
2733
.
46.
Jung
S
,
Aliberti
J
,
Graemmel
P
, et al
.
Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
.
Mol Cell Biol
.
2000
;
20
(
11
):
4106
-
4114
.
47.
van den Berg
JM
,
van Koppen
E
,
Ahlin
A
, et al
.
Chronic granulomatous disease: the European experience
.
PLoS One
.
2009
;
4
(
4
). e5234-e5234.
48.
Bao
S
,
Carr
EDJ
,
Xu
YH
,
Hunt
NH
.
Gp91phox contributes to the development of experimental inflammatory bowel disease
.
Immunol Cell Biol
.
2011
;
89
(
8
):
853
-
860
.
49.
Aviello
G
,
Singh
AK
,
O'Neill
S
, et al
.
Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects
.
Mucosal Immunol
.
2019
;
12
(
6
):
1316
-
1326
.
50.
Rodrigues-Sousa
T
,
Ladeirinha
AF
,
Santiago
AR
, et al
.
Deficient production of reactive oxygen species leads to severe chronic DSS-induced colitis in Ncf1/p47phox-mutant mice
.
PLoS One
.
2014
;
9
(
5
):
e97532
.
51.
Davrandi
M
,
Harris
S
,
Smith
PJ
,
Murray
CD
,
Lowe
DM
.
The relationship between mucosal microbiota, colitis, and systemic inflammation in chronic granulomatous disorder
.
J Clin Immunol
.
2022
;
42
(
2
):
312
-
324
.
52.
Chandrasekaran
P
,
Han
Y
,
Zerbe
CS
, et al
.
Intestinal microbiome and metabolome signatures in patients with chronic granulomatous disease
.
J Allergy Clin Immunol
.
2023
;
152
(
6
):
1619
-
1633.e11
.
53.
Thomson
CA
,
Morgan
SC
,
Ohland
C
,
McCoy
KD
.
From germ-free to wild: modulating microbiome complexity to understand mucosal immunology
.
Mucosal Immunol
.
2022
;
15
(
6
):
1085
-
1094
.
You do not currently have access to this content.
Sign in via your Institution