• RHOA is a key molecular switch that controls cold storage lesions in platelets.

  • RHOA inhibitors R-G04 and S-G04 can preserve the survival and hemostasis of cold-stored platelets in vivo.

Abstract

Patients with thrombocytopenia require platelet transfusion to prevent and stop hemorrhage. Cold storage of platelets results in complex molecular lesions, including changes in membrane microdomains that are recognized by host macrophages and hepatocyte counter-receptors, resulting in phagocytosis and clearance upon transfusion. For this reason, platelets are stored at room temperature, a method that confers increased risk of bacterial contamination. By applying signaling analysis and genetic and pharmacological approaches, we identified that cold-induced activation of RAS homolog family, member A (RHOA) GTPase causes the major hallmarks of platelet cold storage lesions. RHOA deficiency renders murine platelets insensitive to cold storage–induced damage, and pharmacological inhibition by a RHOA activation inhibitor, R-G04, can prevent the cold storage–induced lesions. RHOA inhibition prevents myosin activation and clathrin-independent formation and internalization of lipid rafts enriched in active glycosyltransferases as well as abnormal distribution of GPIbα. RHOA inhibition further prevents the metabolic reprogramming of cold storage–induced lesions and allows the maintenance of glycolytic flux and mitochondria-dependent respiration. Importantly, human platelets transfused in mice after cold storage, in the presence of R-G04 or its more potent enantiomer S-G04, can circulate in vivo at similar levels as room temperature–stored platelets while retaining their hemostatic activity in vivo, as assessed by bleeding time correction in aspirin-treated mice. Our studies provide a mechanism-based translational approach to prevent cold storage–induced damage, which is useful for human platelet transfusion in patients with thrombocytopenia.

1.
Stanworth
SJ
,
Estcourt
LJ
,
Powter
G
, et al
.
A no-prophylaxis platelet-transfusion strategy for hematologic cancers
.
N Engl J Med
.
2013
;
368
(
19
):
1771
-
1780
.
2.
Murphy
S
,
Gardner
FH
.
Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage
.
N Engl J Med
.
1969
;
280
(
20
):
1094
-
1098
.
3.
Jacobs
MR
,
Smith
D
,
Heaton
WA
,
Zantek
ND
,
Good
CE
;
PGD Study Group
.
Detection of bacterial contamination in prestorage culture-negative apheresis platelets on day of issue with the Pan Genera Detection test
.
Transfusion
.
2011
;
51
(
12
):
2573
-
2582
.
4.
Riley
W
,
Cohn
CS
,
Love
K
,
McCullough
J
.
Ensuring a reliable platelet supply in the United States
.
N Engl J Med
.
2023
;
388
(
22
):
2017
-
2019
.
5.
Szczepiorkowski
ZM
,
Pagano
MB
.
Platelet components and bacterial contamination: hospital perspective 2022
.
Hematology Am Soc Hematol Educ Program
.
2022
;
2022
(
1
):
430
-
436
.
6.
Important Information for Blood Establishments and Transfusion Services Regarding Bacterial Contamination of Platelets for Transfusion
.
FDA
;
2022
.
7.
Garban
F
,
Guyard
A
,
Labussiere
H
, et al
.
Comparison of the hemostatic efficacy of pathogen-reduced platelets vs untreated platelets in patients with thrombocytopenia and malignant hematologic diseases: a randomized clinical trial
.
JAMA Oncol
.
2018
;
4
(
4
):
468
-
475
.
8.
Pati
I
,
Masiello
F
,
Pupella
S
,
Cruciani
M
,
De Angelis
V
.
Efficacy and safety of pathogen-reduced platelets compared with standard apheresis platelets: a systematic review of RCTs
.
Pathogens
.
2022
;
11
(
6
):
639-650
.
9.
Ketter
PM
,
Kamucheka
R
,
Arulanandam
B
,
Akers
K
,
Cap
AP
.
Platelet enhancement of bacterial growth during room temperature storage: mitigation through refrigeration
.
Transfusion
.
2019
;
59
(
S2
):
1479
-
1489
.
10.
Hornsey
VS
,
McColl
K
,
Drummond
O
, et al
.
Extended storage of platelets in SSP platelet additive solution
.
Vox Sang
.
2006
;
91
(
1
):
41
-
46
.
11.
Fontaine
MJ
,
Chung
YT
,
Rogers
WM
, et al
.
Improving platelet supply chains through collaborations between blood centers and transfusion services
.
Transfusion
.
2009
;
49
(
10
):
2040
-
2047
.
12.
Townsend
L
.
Extended platelet storage makes a welcome difference
.
MLO Med Lab Obs
.
2007
;
39
(
6
):
40
-
41
.
13.
Buijs
TJ
,
McNaughton
PA
.
The role of cold-sensitive ion channels in peripheral thermosensation
.
Front Cell Neurosci
.
2020
;
14
:
262
-
268
.
14.
Stratiievska
A
,
Filippova
O
,
Ozpolat
T
, et al
.
Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets
.
PLoS One
.
2024
;
19
(
3
):
e0289395
.
15.
Gitz
E
,
Koekman
CA
,
van den Heuvel
DJ
, et al
.
Improved platelet survival after cold storage by prevention of glycoprotein Ibalpha clustering in lipid rafts
.
Haematologica
.
2012
;
97
(
12
):
1873
-
1881
.
16.
van der Wal
DE
,
Gitz
E
,
Du
VX
, et al
.
Arachidonic acid depletion extends survival of cold-stored platelets by interfering with the [glycoprotein Ibalpha--14-3-3zeta] association
.
Haematologica
.
2012
;
97
(
10
):
1514
-
1522
.
17.
Bali
R
,
Savino
L
,
Ramirez
DA
, et al
.
Macroscopic domain formation during cooling in the platelet plasma membrane: an issue of low cholesterol content
.
Biochim Biophys Acta
.
2009
;
1788
(
6
):
1229
-
1237
.
18.
Gousset
K
,
Tsvetkova
NM
,
Crowe
JH
,
Tablin
F
.
Important role of raft aggregation in the signaling events of cold-induced platelet activation
.
Biochim Biophys Acta
.
2004
;
1660
(
1-2
):
7
-
15
.
19.
Kramer
RM
,
Roberts
EF
,
Um
SL
, et al
.
p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2
.
J Biol Chem
.
1996
;
271
(
44
):
27723
-
27729
.
20.
Kazandzhieva
K
,
Mammadova-Bach
E
,
Dietrich
A
,
Gudermann
T
.
Braun A TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact
.
Pharmacol Ther
.
2022
;
237
:
108164
-
108183
.
21.
Hartwig
JH
.
Mechanisms of actin rearrangements mediating platelet activation
.
J Cell Biol
.
1992
;
118
(
6
):
1421
-
1442
.
22.
Hartwig
JH
,
DeSisto
M
.
The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments
.
J Cell Biol
.
1991
;
112
(
3
):
407
-
425
.
23.
Hoffmeister
KM
,
Falet
H
,
Toker
A
,
Barkalow
KL
,
Stossel
TP
,
Hartwig
JH
.
Mechanisms of cold-induced platelet actin assembly
.
J Biol Chem
.
2001
;
276
(
27
):
24751
-
24759
.
24.
Winokur
R
,
Hartwig
JH
.
Mechanism of shape change in chilled human platelets
.
Blood
.
1995
;
85
(
7
):
1796
-
1804
.
25.
van der Wal
DE
,
Du
VX
,
Lo
KS
,
Rasmussen
JT
,
Verhoef
S
,
Akkerman
JW
.
Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering
.
J Thromb Haemost
.
2010
;
8
(
11
):
2554
-
2562
.
26.
Hoffmeister
KM
,
Josefsson
EC
,
Isaac
NA
,
Clausen
H
,
Hartwig
JH
,
Stossel
TP
.
Glycosylation restores survival of chilled blood platelets
.
Science
.
2003
;
301
(
5639
):
1531
-
1534
.
27.
Josefsson
EC
,
Gebhard
HH
,
Stossel
TP
,
Hartwig
JH
,
Hoffmeister
KM
.
The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets
.
J Biol Chem
.
2005
;
280
(
18
):
18025
-
18032
.
28.
Rumjantseva
V
,
Grewal
PK
,
Wandall
HH
, et al
.
Dual roles for hepatic lectin receptors in the clearance of chilled platelets
.
Nat Med
.
2009
;
15
(
11
):
1273
-
1280
.
29.
Wang
Y
,
Chen
W
,
Zhang
W
, et al
.
Desialylation of O-glycans on glycoprotein Ibalpha drives receptor signaling and platelet clearance
.
Haematol
.
2020
;
106
(
1
):
220
-
229
.
30.
Hoffmeister
KM
,
Felbinger
TW
,
Falet
H
, et al
.
The clearance mechanism of chilled blood platelets
.
Cell
.
2003
;
112
(
1
):
87
-
97
.
31.
Chen
W
,
Druzak
SA
,
Wang
Y
, et al
.
Refrigeration-induced binding of von Willebrand factor facilitates fast clearance of refrigerated platelets
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
12
):
2271
-
2279
.
32.
Deng
W
,
Xu
Y
,
Chen
W
, et al
.
Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor
.
Nat Commun
.
2016
;
7
:
12863
-
12875
.
33.
Hoffmeister
M
,
Riha
P
,
Neumuller
O
,
Danielewski
O
,
Schultess
J
,
Smolenski
AP
.
Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets
.
J Biol Chem
.
2008
;
283
(
4
):
2297
-
2306
.
34.
Akbar
H
,
Cancelas
J
,
Williams
DA
,
Zheng
J
,
Zheng
Y
.
Rational design and applications of a Rac GTPase-specific small molecule inhibitor
.
Methods Enzymol
.
2006
;
406
:
554
-
565
.
35.
Akbar
H
,
Shang
X
,
Perveen
R
, et al
.
Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation
.
PLoS One
.
2011
;
6
(
7
):
e22117
.
36.
Aslan
JE
,
McCarty
OJ
.
Rho GTPases in platelet function
.
J Thromb Haemost
.
2013
;
11
(
1
):
35
-
46
.
37.
Akbar
H
,
Kim
J
,
Funk
K
, et al
.
Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation
.
J Thromb Haemost
.
2007
;
5
(
8
):
1747
-
1755
.
38.
McCarty
OJ
,
Larson
MK
,
Auger
JM
, et al
.
Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow
.
J Biol Chem
.
2005
;
280
(
47
):
39474
-
39484
.
39.
Schoenwaelder
SM
,
Hughan
SC
,
Boniface
K
, et al
.
RhoA sustains integrin alpha IIbbeta 3 adhesion contacts under high shear
.
J Biol Chem
.
2002
;
277
(
17
):
14738
-
14746
.
40.
Suzuki
Y
,
Yamamoto
M
,
Wada
H
, et al
.
Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase
.
Blood
.
1999
;
93
(
10
):
3408
-
3417
.
41.
Yang
SA
,
Carpenter
CL
,
Abrams
CS
.
Rho and Rho-kinase mediate thrombin-induced phosphatidylinositol 4-phosphate 5-kinase trafficking in platelets
.
J Biol Chem
.
2004
;
279
(
40
):
42331
-
42336
.
42.
Dandamudi
A
,
Seibel
W
,
Tourdot
B
,
Cancelas
JA
,
Akbar
H
,
Zheng
Y
.
Structure-activity relationship analysis of Rhosin, a RhoA GTPase inhibitor, reveals a new class of antiplatelet agents
.
Int J Mol Sci
.
2023
;
24
(
4
):
4167
.
43.
Shang
X
,
Marchioni
F
,
Sipes
N
, et al
.
Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases
.
Chem Biol
.
2012
;
19
(
6
):
699
-
710
.
44.
Gao
Y
,
Dickerson
JB
,
Guo
F
,
Zheng
J
,
Zheng
Y
.
Rational design and characterization of a Rac GTPase-specific small molecule inhibitor
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
20
):
7618
-
7623
.
45.
Nassar
N
,
Cancelas
J
,
Zheng
J
,
Williams
DA
,
Zheng
Y
.
Structure-function based design of small molecule inhibitors targeting Rho family GTPases
.
Curr Top Med Chem
.
2006
;
6
(
11
):
1109
-
1116
.
46.
Johnson
L
,
Roan
C
,
Lei
P
,
Spinella
PC
,
Marks
DC
.
The role of sodium citrate during extended cold storage of platelets in platelet additive solutions
.
Transfusion
.
2023
;
63
(
suppl 3
):
S126
-
S137
.
47.
Shea
SM
,
Spinella
PC
,
Thomas
KA
.
Cold-stored platelet function is not significantly altered by agitation or manual mixing
.
Transfusion
.
2022
;
62
(
9
):
1850
-
1859
.
48.
Johnson
L
,
Vekariya
S
,
Wood
B
,
Tan
S
,
Roan
C
,
Marks
DC
.
Refrigeration of apheresis platelets in platelet additive solution (PAS-E) supports in vitro platelet quality to maximize the shelf-life
.
Transfusion
.
2021
;
61
(
suppl 1
):
S58
-
S67
.
49.
Wagner
SJ
,
Seetharaman
S
,
Kurtz
J
.
Properties of pediatric aliquots of apheresis platelets stored in a polyolefin container
.
Transfusion
.
2013
;
53
(
2
):
464
-
465
.
50.
Kogler
VJ
,
Miles
JA
,
Ozpolat
T
, et al
.
Platelet dysfunction reversal with cold-stored vs room temperature-stored platelet transfusions
.
Blood
.
2024
;
143
(
20
):
2073
-
2088
.
51.
Miles
J
,
Bailey
SL
,
Obenaus
AM
, et al
.
Storage temperature determines platelet GPVI levels and function in mice and humans
.
Blood Adv
.
2021
;
5
(
19
):
3839
-
3849
.
52.
Filip
DJ
,
Aster
RH
.
Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C
.
J Lab Clin Med
.
1978
;
91
(
4
):
618
-
624
.
53.
Canales
J
,
Morales
D
,
Blanco
C
, et al
.
A TR(i)P to cell migration: new roles of TRP channels in mechanotransduction and cancer
.
Front Physiol
.
2019
;
10
:
757
-
770
.
54.
Singh
I
,
Knezevic
N
,
Ahmmed
GU
,
Kini
V
,
Malik
AB
,
Mehta
D
.
Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin
.
J Biol Chem
.
2007
;
282
(
11
):
7833
-
7843
.
55.
Duan
X
,
Perveen
R
,
Dandamudi
A
, et al
.
Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis
.
Sci Rep
.
2021
;
11
(
1
):
13170
.
56.
Hegde
S
,
Wellendorf
AM
,
Zheng
Y
,
Cancelas
JA
.
Antioxidant prevents clearance of hemostatically competent platelets after long-term cold storage
.
Transfusion
.
2021
;
61
(
2
):
557
-
567
.
57.
Zhou
X
,
Florian
MC
,
Arumugam
P
, et al
.
RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors
.
J Exp Med
.
2013
;
210
(
11
):
2371
-
2385
.
58.
Pleines
I
,
Hagedorn
I
,
Gupta
S
, et al
.
Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis
.
Blood
.
2012
;
119
(
4
):
1054
-
1063
.
59.
Bojar
D
,
Meche
L
,
Meng
G
, et al
.
A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities
.
ACS Chem Biol
.
2022
;
17
(
11
):
2993
-
3012
.
60.
Francis
TC
,
Gaynor
A
,
Chandra
R
,
Fox
ME
,
Lobo
MK
.
The selective RhoA inhibitor Rhosin promotes stress resiliency through enhancing D1-medium spiny neuron plasticity and reducing hyperexcitability
.
Biol Psychiatry
.
2019
;
85
(
12
):
1001
-
1010
.
61.
Tsubaki
M
,
Genno
S
,
Takeda
T
, et al
.
Rhosin suppressed tumor cell metastasis through inhibition of Rho/YAP pathway and expression of RHAMM and CXCR4 in melanoma and breast cancer cells
.
Biomedicines
.
2021
;
9
(
1
):
35
.
62.
Kattlove
HE
,
Alexander
B
,
White
F
.
The effect of cold on platelets. II. Platelet function after short-term storage at cold temperatures
.
Blood
.
1972
;
40
(
5
):
688
-
696
.
63.
White
JG
,
Krivit
W
.
An ultrastructural basis for the shape changes induced in platelets by chilling
.
Blood
.
1967
;
30
(
5
):
625
-
635
.
64.
White
JG
,
Krumwiede
M
.
Influence of cytochalasin B on the shape change induced in platelets by cold
.
Blood
.
1973
;
41
(
6
):
823
-
832
.
65.
Doherty
GJ
,
McMahon
HT
.
Mechanisms of endocytosis
.
Annu Rev Biochem
.
2009
;
78
:
857
-
902
.
66.
Hansen
CG
,
Nichols
BJ
.
Molecular mechanisms of clathrin-independent endocytosis
.
J Cell Sci
.
2009
;
122
(
pt 11
):
1713
-
1721
.
67.
Feng
Y
,
LoGrasso
PV
,
Defert
O
,
Li
R
.
Rho kinase (ROCK) inhibitors and their therapeutic potential
.
J Med Chem
.
2016
;
59
(
6
):
2269
-
2300
.
68.
Rini
JM
,
Moremen
KW
,
Davis
BG
,
Esko
JD
. Glycosyltransferases and glycan-processing enzymes. In:
Varki
A
,
Cummings
RD
,
Esko
JD
, eds.
Essentials of Glycobiology
.
Cold Spring Harbor Laboratory Press
;
2022
:
67
-
78
.
69.
Six
KR
,
Debaene
C
,
Van den Hauwe
M
, et al
.
GPIbα shedding in platelets is controlled by strict intracellular containment of both enzyme and substrate
.
J Thromb Haemost
.
2023
;
21
(
8
):
2223
-
2235
.
70.
Jansen
AJ
,
Josefsson
EC
,
Rumjantseva
V
, et al
.
Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice
.
Blood
.
2012
;
119
(
5
):
1263
-
1273
.
71.
Li
J
,
van der Wal
DE
,
Zhu
G
, et al
.
Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia
.
Nat Commun
.
2015
;
6
:
7737
-
7752
.
72.
Quach
ME
,
Chen
W
,
Li
R
.
Mechanisms of platelet clearance and translation to improve platelet storage
.
Blood
.
2018
;
131
(
14
):
1512
-
1521
.
73.
Rosenbalm
KE
,
Lee-Sundlov
MM
,
Ashline
DJ
, et al
.
Characterization of the human platelet N- and O-glycome upon storage using tandem mass spectrometry
.
Blood Adv
.
2023
;
7
(
16
):
4278
-
4290
.
74.
van der Wal
DE
,
Davis
AM
,
Mach
M
,
Marks
DC
.
The role of neuraminidase 1 and 2 in glycoprotein Ibalpha-mediated integrin alphaIIbbeta3 activation
.
Haematologica
.
2020
;
105
(
4
):
1081
-
1094
.
75.
van der Wal
DE
,
Rey Gomez
LM
,
Hueneburg
T
,
Linnane
C
,
Marks
DC
.
Changes in glycans on platelet microparticles released during storage of apheresis platelets are associated with phosphatidylserine externalization and phagocytosis
.
Transfusion
.
2022
;
62
(
6
):
1289
-
1301
.
76.
Wandall
HH
,
Hassan
H
,
Mirgorodskaya
E
, et al
.
Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3
.
J Biol Chem
.
1997
;
272
(
38
):
23503
-
23514
.
77.
Chacko
BK
,
Kramer
PA
,
Ravi
S
, et al
.
The Bioenergetic Health Index: a new concept in mitochondrial translational research
.
Clin Sci
.
2014
;
127
(
6
):
367
-
373
.
78.
Chen
W
,
Liang
X
,
Syed
AK
, et al
.
Inhibiting GPIbalpha shedding preserves post-transfusion recovery and hemostatic function of platelets after prolonged storage
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
9
):
1821
-
1828
.
79.
Chen 陈温纯
W
,
Voos
KM
,
Josephson
CD
,
Li
R
.
Short-acting anti-VWF (von Willebrand factor) aptamer improves the recovery, survival, and hemostatic functions of refrigerated platelets
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
10
):
2028
-
2037
.
80.
Sit
ST
,
Manser
E
.
Rho GTPases and their role in organizing the actin cytoskeleton
.
J Cell Sci
.
2011
;
124
(
pt 5
):
679
-
683
.
81.
Stubbs
JR
,
Tran
SA
,
Emery
RL
, et al
.
Cold platelets for trauma-associated bleeding: regulatory approval, accreditation approval, and practice implementation-just the "tip of the iceberg"
.
Transfusion
.
2017
;
57
(
12
):
2836
-
2844
.
82.
Slichter
SJ
,
Corson
J
,
Jones
MK
, et al
.
Exploratory studies of extended storage of apheresis platelets in a platelet additive solution (PAS)
.
Blood
.
2014
;
123
(
2
):
271
-
280
.
83.
Cameron
B
,
Rock
G
,
Olberg
B
,
Neurath
D
.
Evaluation of platelet transfusion triggers in a tertiary-care hospital
.
Transfusion
.
2007
;
47
(
2
):
206
-
211
.
84.
Etchells
M
,
Spradbrow
J
,
Cohen
R
, et al
.
Audit of appropriate use of platelet transfusions: validation of adjudication criteria
.
Vox Sang
.
2018
;
113
(
1
):
40
-
50
.
You do not currently have access to this content.
Sign in via your Institution