• AMIS-inducing antibodies trigger in vivo RBC antigen and membrane loss independent of clearance.

  • AMIS-inducing antibodies, including anti-D, trigger in vitro RBC antigen loss and membrane transfer to macrophages through trogocytosis.

Abstract

Red blood cell (RBC) alloimmunization to paternal antigens during pregnancy can cause hemolytic disease of the fetus and newborn (HDFN). This severe and potentially fatal neonatal disorder can be prevented by the administration of polyclonal anti-D through a mechanism referred to as antibody-mediated immune suppression (AMIS). Although anti-D prophylaxis effectively prevents HDFN, a lack of mechanistic clarity has hampered its replacement with recombinant agents. The major theories behind AMIS induction in the hematologic literature have classically centered around RBC clearance; however, antigen modulation/loss has recently been proposed as a potential mechanism of AMIS. To explore the primary mechanisms of AMIS, we studied the ability of 11 different antibodies to induce AMIS, RBC clearance, antigen loss, and RBC membrane loss in the HOD (hen egg lysozyme–ovalbumin–human Duffy) murine model. Antibodies targeting different portions of the HOD molecule could induce AMIS independent of their ability to clear RBCs; however, all antibodies capable of inducing a strong AMIS effect also caused significant in vivo loss of the HOD antigen in conjunction with RBC membrane loss. In vitro studies of AMIS-inducing antibodies demonstrated simultaneous RBC antigen and membrane loss, which was mediated by macrophages. Confocal live-cell microscopy revealed that AMIS-inducing antibodies triggered RBC membrane transfer to macrophages, consistent with trogocytosis. Furthermore, anti-D itself can induce trogocytosis even at low concentrations, when phagocytosis is minimal or absent. In view of these findings, we propose trogocytosis as a mechanism of AMIS induction.

1.
de Haas
M
,
Thurik
FF
,
Koelewijn
JM
,
van der Schoot
CE
.
Haemolytic disease of the fetus and newborn
.
Vox Sang
.
2015
;
109
(
2
):
99
-
113
.
2.
Hendrickson
JE
,
Delaney
M
.
Hemolytic disease of the fetus and newborn: modern practice and future investigations
.
Transfus Med Rev
.
2016
;
30
(
4
):
159
-
164
.
3.
de Haas
M
,
Finning
K
,
Massey
E
,
Roberts
DJ
.
Anti-D prophylaxis: past, present and future
.
Transfus Med
.
2014
;
24
(
1
):
1
-
7
.
4.
Bergström
JJE
,
Xu
H
,
Heyman
B
.
Epitope-specific suppression of IgG responses by passively administered specific IgG: evidence of epitope masking
.
Front Immunol
.
2017
;
8
:
238
.
5.
Brinc
D
,
Lazarus
AH
.
Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn
.
Hematology Am Soc Hematol Educ Program
.
2009
;
2009
(
1
):
185
-
191
.
6.
Cruz-Leal
Y
,
Marjoram
D
,
Lazarus
AH
.
Prevention of hemolytic disease of the fetus and newborn: what have we learned from animal models?
.
Curr Opin Hematol
.
2017
;
24
(
6
):
536
-
543
.
7.
Bergström
JJE
,
Heyman
B
.
Mice immunized with IgG anti-sheep red blood cells (SRBC) together with SRBC have a suppressed anti-SRBC antibody response but generate germinal centers and anti-IgG antibodies in response to the passively administered IgG
.
Front Immunol
.
2017
;
8
:
911
.
8.
Brinc
D
,
Le-Tien
H
,
Crow
AR
,
Semple
JW
,
Freedman
J
,
Lazarus
AH
.
Transfusion of antibody-opsonized red blood cells results in a shift in the immune response from the red blood cell to the antibody in a murine model
.
Transfusion
.
2010
;
50
(
9
):
2016
-
2025
.
9.
Mollison
PL
,
Crome
P
,
Hughes-Jones
NC
,
Rochna
E
.
Rate of removal from the circulation of red cells sensitized with different amounts of antibody
.
Br J Haematol
.
1965
;
11
:
461
-
470
.
10.
Mayekar
RV
,
Paradkar
GV
,
Bhosale
AA
, et al
.
Recombinant anti-D for prevention of maternal-foetal Rh(D) alloimmunization: a randomized multi-centre clinical trial
.
Obstet Gynecol Sci
.
2020
;
63
(
3
):
315
-
322
.
11.
Kumpel
BM
,
Goodrick
MJ
,
Pamphilon
DH
, et al
.
Human Rh D monoclonal antibodies (BRAD-3 and BRAD-5) cause accelerated clearance of Rh D+ red blood cells and suppression of Rh D immunization in Rh D- volunteers
.
Blood
.
1995
;
86
(
5
):
1701
-
1709
.
12.
Béliard
R
.
Monoclonal anti-D antibodies to prevent alloimmunization: lessons from clinical trials
.
Transfus Clin Biol
.
2006
;
13
(
1-2
):
58
-
64
.
13.
Yu
H
,
Stowell
SR
,
Bernardo
L
, et al
.
Antibody-mediated immune suppression of erythrocyte alloimmunization can occur independently from red cell clearance or epitope masking in a murine model
.
J Immunol
.
2014
;
193
(
6
):
2902
-
2910
.
14.
Liu
J
,
Santhanakrishnan
M
,
Natarajan
P
, et al
.
Antigen modulation as a potential mechanism of anti-KEL immunoprophylaxis in mice
.
Blood
.
2016
;
128
(
26
):
3159
-
3168
.
15.
Cruz-Leal
Y
,
Marjoram
D
,
Lazarus
AH
.
Erythrocyte saturation with IgG is required for inducing antibody-mediated immune suppression and impacts both erythrocyte clearance and antigen-modulation mechanisms
.
J Immunol
.
2018
;
200
(
4
):
1295
-
1305
.
16.
Cruz-Leal
Y
,
Lazarus
AH
.
Could antigen loss be a potential mechanism to explain antibody-mediated immune suppression?
.
Transfusion
.
2021
;
61
(
4
):
1004
-
1006
.
17.
Maier
CL
,
Mener
A
,
Patel
SR
, et al
.
Antibody-mediated immune suppression by antigen modulation is antigen-specific
.
Blood Adv
.
2018
;
2
(
21
):
2986
-
3000
.
18.
Mener
A
,
Patel
SR
,
Arthur
CM
,
Stowell
SR
.
Antibody-mediated immunosuppression can result from RBC antigen loss independent of Fcgamma receptors in mice
.
Transfusion
.
2019
;
59
(
1
):
371
-
384
.
19.
Mener
A
,
Arthur
CM
,
Patel
SR
,
Liu
J
,
Hendrickson
JE
,
Stowell
SR
.
Complement component 3 negatively regulates antibody response by modulation of red blood cell antigen
.
Front Immunol
.
2018
;
9
:
676
.
20.
Sullivan
HC
,
Arthur
CM
,
Thompson
L
, et al
.
Anti-RhD reduces levels of detectable RhD antigen following anti-RhD infusion
.
Transfusion
.
2018
;
58
(
2
):
542
-
544
.
21.
Taylor
RP
,
Lindorfer
MA
.
Fcgamma-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments
.
Blood
.
2015
;
125
(
5
):
762
-
766
.
22.
Hudrisier
D
,
Aucher
A
,
Puaux
AL
,
Bordier
C
,
Joly
E
.
Capture of target cell membrane components via trogocytosis is triggered by a selected set of surface molecules on T or B cells
.
J Immunol
.
2007
;
178
(
6
):
3637
-
3647
.
23.
Miyake
K
,
Shiozawa
N
,
Nagao
T
,
Yoshikawa
S
,
Yamanishi
Y
,
Karasuyama
H
.
Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
5
):
1111
-
1116
.
24.
Matlung
HL
,
Babes
L
,
Zhao
XW
, et al
.
Neutrophils kill antibody-opsonized cancer cells by trogoptosis
.
Cell Rep
.
2018
;
23
(
13
):
3946
-
3959.e6
.
25.
Vanherberghen
B
,
Andersson
K
,
Carlin
LM
, et al
.
Human and murine inhibitory natural killer cell receptors transfer from natural killer cells to target cells
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
48
):
16873
-
16878
.
26.
Wabnitz
H
,
Cruz-Leal
Y
,
Lazarus
AH
.
Antigen copy number and antibody dose can determine the outcome of erythrocyte alloimmunization inducing either antibody-mediated immune suppression or enhancement in a murine model
.
Transfusion
.
2023
;
63
(
4
):
696
-
702
.
27.
Wasniowska
K
,
Lisowska
E
,
Halverson
GR
,
Chaudhuri
A
,
Reid
ME
.
The Fya, Fy6 and Fy3 epitopes of the Duffy blood group system recognized by new monoclonal antibodies: identification of a linear Fy3 epitope
.
Br J Haematol
.
2004
;
124
(
1
):
118
-
122
.
28.
Yu
X
,
Menard
M
,
Seabright
G
,
Crispin
M
,
Lazarus
AH
.
A monoclonal antibody with anti-D-like activity in murine immune thrombocytopenia requires Fc domain function for immune thrombocytopenia ameliorative effects
.
Transfusion
.
2015
;
55
(
6 pt 2
):
1501
-
1511
.
29.
Crow
AR
,
Kapur
R
,
Koernig
S
, et al
.
Treating murine inflammatory diseases with an anti-erythrocyte antibody
.
Sci Transl Med
.
2019
;
11
(
506
):
eaau8217
.
30.
de Almeida
V
,
Bowman
JM
.
Massive fetomaternal hemorrhage: manitoba experience
.
Obstet Gynecol
.
1994
;
83
(
3
):
323
-
328
.
31.
Bernardo
L
,
Yu
H
,
Amash
A
,
Zimring
JC
,
Lazarus
AH
.
IgG-mediated immune suppression to erythrocytes by polyclonal antibodies can occur in the absence of activating or inhibitory fcgamma receptors in a full mouse model
.
J Immunol
.
2015
;
195
(
5
):
2224
-
2230
.
32.
Khan
R
,
Menard
M
,
Jen
CC
,
Chen
X
,
Norris
PAA
,
Lazarus
AH
.
Inhibition of platelet phagocytosis as an in vitro predictor for therapeutic potential of RBC antibodies in murine ITP
.
Blood
.
2020
;
135
(
26
):
2420
-
2424
.
33.
Celada
A
,
Gray
PW
,
Rinderknecht
E
,
Schreiber
RD
.
Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity
.
J Exp Med
.
1984
;
160
(
1
):
55
-
74
.
34.
Cruz-Leal
Y
,
Grubaugh
D
,
Nogueira
CV
, et al
.
The vacuolar pathway in macrophages plays a major role in antigen cross-presentation induced by the pore-forming protein sticholysin II encapsulated into liposomes
.
Front Immunol
.
2018
;
9
:
2473
.
35.
Gil Gonzalez
L
,
Fernandez-Marrero
Y
,
Norris
PAA
, et al
.
THP-1 cells transduced with CD16A utilize Fcgamma receptor I and III in the phagocytosis of IgG-sensitized human erythrocytes and platelets
.
PLoS One
.
2022
;
17
(
12
):
e0278365
.
36.
Riedl
J
,
Crevenna
AH
,
Kessenbrock
K
, et al
.
Lifeact: a versatile marker to visualize F-actin
.
Nat Methods
.
2008
;
5
(
7
):
605
-
607
.
37.
Bettadapur
A
,
Miller
HW
,
Ralston
KS
.
Biting off what can be chewed: trogocytosis in health, infection, and disease
.
Infect Immun
.
2020
;
88
(
7
):
e00930-19
.
38.
Bernardo
L
,
Amash
A
,
Marjoram
D
,
Lazarus
AH
.
Antibody-mediated immune suppression is effective when blends of anti-RBC monoclonal antibodies are used in mice
.
Blood
.
2016
;
128
(
8
):
1076
-
1080
.
39.
Stowell
SR
,
Arthur
CM
,
Girard-Pierce
KR
, et al
.
Anti-KEL sera prevents alloimmunization to transfused KEL RBCs in a murine model
.
Haematologica
.
2015
;
100
(
10
):
e394
-
397
.
40.
Crow
AR
,
Freedman
J
,
Hannach
B
,
Lazarus
AH
.
Monoclonal antibody-mediated inhibition of the human HLA alloimmune response to platelet transfusion is antigen specific and independent of Fcgamma receptor-mediated immune suppression
.
Br J Haematol
.
2000
;
110
(
2
):
481
-
487
.
41.
Tiller
H
,
Killie
MK
,
Chen
P
, et al
.
Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model
.
Transfusion
.
2012
;
52
(
7
):
1446
-
1457
.
42.
Appaiahgari
MB
,
Glass
R
,
Singh
S
, et al
.
Transplacental rotavirus IgG interferes with immune response to live oral rotavirus vaccine ORV-116E in Indian infants
.
Vaccine
.
2014
;
32
(
6
):
651
-
656
.
43.
Siegrist
CA
,
Córdova
M
,
Brandt
C
, et al
.
Determinants of infant responses to vaccines in presence of maternal antibodies
.
Vaccine
.
1998
;
16
(
14-15
):
1409
-
1414
.
44.
Brinc
D
,
Denomme
GA
,
Lazarus
AH
.
Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn: what can we learn from rodent models?
.
Curr Opin Hematol
.
2009
;
16
(
6
):
488
-
496
.
45.
Xu
H
,
Heyman
B
.
IgG-mediated suppression of antibody responses: hiding or snatching epitopes?
.
Scand J Immunol
.
2020
;
92
(
4
):
e12921
.
46.
Karlsson
MC
,
Getahun
A
,
Heyman
B
.
FcgammaRIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro
.
J Immunol
.
2001
;
167
(
10
):
5558
-
5564
.
47.
Kumpel
BM
.
Efficacy of RhD monoclonal antibodies in clinical trials as replacement therapy for prophylactic anti-D immunoglobulin: more questions than answers
.
Vox Sang
.
2007
;
93
(
2
):
99
-
111
.
48.
Kumpel
BM
.
Lessons learnt from many years of experience using anti-D in humans for prevention of RhD immunization and haemolytic disease of the fetus and newborn
.
Clin Exp Immunol
.
2008
;
154
(
1
):
1
-
5
.
49.
Marjoram
D
,
Cruz-Leal
Y
,
Bernardo
L
,
Lazarus
AH
.
A role for red cell clearance in antibody-mediated inhibition of erythrocyte alloimmunization? International Society of Blood Transfusion
.
ISBT Sci Ser
.
2016
;
12
(
1
):
6
.
50.
Kemp
WM
,
Brown
PR
,
Merritt
SC
,
Miller
RE
.
Tegument-associated antigen modulation by adult male Schistosoma mansoni
.
J Immunol
.
1980
;
124
(
2
):
806
-
811
.
51.
Dwyer
DM
.
Antibody-induced modulation of Leishmania donovani surface membrane antigens
.
J Immunol
.
1976
;
117
(
6
):
2081
-
2091
.
52.
Schroff
RW
,
Farrell
MM
,
Klein
RA
,
Oldham
RK
,
Foon
KA
.
T65 antigen modulation in a phase I monoclonal antibody trial with chronic lymphocytic leukemia patients
.
J Immunol
.
1984
;
133
(
3
):
1641
-
1648
.
53.
Winfield
JB
.
Anti-lymphocyte antibodies in systemic lupus erythematosus
.
Clin Rheum Dis
.
1985
;
11
(
3
):
523
-
549
.
54.
Ballas
SK
,
Burka
ER
.
Protease activity in the human erythrocyte: localization to the cell membrane
.
Blood
.
1979
;
53
(
5
):
875
-
882
.
55.
Chiangjong
W
,
Netsirisawan
P
,
Hongeng
S
,
Chutipongtanate
S
.
Red blood cell extracellular vesicle-based drug delivery: challenges and opportunities
.
Front Med
.
2021
;
8
:
761362
.
56.
Miyake
K
,
Karasuyama
H
.
The role of trogocytosis in the modulation of immune cell functions
.
Cells
.
2021
;
10
(
5
):
1255
.
57.
Wabnitz
H
,
Cruz-Leal
Y
,
Lazarus
AH
.
Antigen-specific IgG subclass composition in recipient mice can indicate the degree of red blood cell alloimmunization as well as discern between primary and secondary immunization
.
Transfusion
.
2023
;
63
(
3
):
619
-
628
.
You do not currently have access to this content.
Sign in via your Institution