• SCD stem cell–derived sensory neurons (iSNs) exhibit pronounced sensitization to electrical stimulation.

  • SCD plasma sensitizes SCD iSNs to transient receptor potential cation channel subfamily V member 1 stimulation by capsaicin.

Abstract

Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. Challenges to gaining mechanistic insight into pathogenic SCD pain processes include differential gene expression and function of sensory neurons between humans and mice with SCD, and extremely limited availability of neuronal tissues from patients with SCD. Here, we used induced pluripotent stem cells (iPSCs), derived from patients with SCD, differentiated into sensory neurons (SCD iSNs) to begin to overcome these challenges. We characterize key gene expression and function of SCD iSNs to establish a model to investigate intrinsic and extrinsic factors that may contribute to SCD pain. Despite similarities in receptor gene expression, SCD iSNs show pronounced excitability using patch clamp electrophysiology. Furthermore, we find that plasma taken from patients with SCD during acute pain associated with a vaso-occlusive event increases the calcium responses to the nociceptive stimulus capsaicin in SCD iSNs compared with those treated with paired plasma from patients with SCD at steady state baseline or healthy control plasma samples. We identified high levels of the polyamine spermine in baseline and acute pain states of plasma from patients with SCD, which sensitizes SCD iSNs to subthreshold concentrations of capsaicin. Together, these data identify potential intrinsic mechanisms within SCD iSNs that may extend beyond a blood-based pathology.

1.
Piel
FB
,
Patil
AP
,
Howes
RE
, et al
.
Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates
.
Lancet
.
2013
;
381
(
9861
):
142
-
151
.
2.
Brousseau
DC
,
Panepinto
JA
,
Nimmer
M
,
Hoffmann
RG
.
The number of people with sickle-cell disease in the United States: national and state estimates
.
Am J Hematol
.
2010
;
85
(
1
):
77
-
78
.
3.
Hassell
KL
.
Population estimates of sickle cell disease in the U.S
.
Am J Prev Med
.
2010
;
38
(
4 suppl
):
S512
-
S521
.
4.
Kauf
TL
,
Coates
TD
,
Huazhi
L
,
Mody-Patel
N
,
Hartzema
AG
.
The cost of health care for children and adults with sickle cell disease
.
Am J Hematol
.
2009
;
84
(
6
):
323
-
327
.
5.
Brousseau
DC
,
Owens
PL
,
Mosso
AL
,
Panepinto
JA
,
Steiner
CA
.
Acute care utilization and rehospitalizations for sickle cell disease
.
JAMA
.
2010
;
303
(
13
):
1288
-
1294
.
6.
Lanzkron
S
,
Carroll
CP
,
Haywood
C
.
The burden of emergency department use for sickle-cell disease: an analysis of the national emergency department sample database
.
Am J Hematol
.
2010
;
85
(
10
):
797
-
799
.
7.
Jacob
E
,
Miaskowski
C
,
Savedra
M
,
Beyer
JE
,
Treadwell
M
,
Styles
L
.
Changes in intensity, location, and quality of vaso-occlusive pain in children with sickle cell disease
.
Pain
.
2003
;
102
(
1-2
):
187
-
193
.
8.
Fosdal
MB
.
Perception of pain among pediatric patients with sickle cell pain crisis
.
J Pediatr Oncol Nurs
.
2015
;
32
(
1
):
5
-
20
.
9.
Ballas
SK
.
Lactate dehydrogenase and hemolysis in sickle cell disease
.
Blood
.
2013
;
121
(
1
):
243
-
244
.
10.
Thompson
WE
,
Eriator
I
.
Pain control in sickle cell disease patients: use of complementary and alternative medicine
.
Pain Med
.
2014
;
15
(
2
):
241
-
246
.
11.
Wilkie
DJ
,
Molokie
R
,
Boyd-Seal
D
, et al
.
Patient-reported outcomes: descriptors of nociceptive and neuropathic pain and barriers to effective pain management in adult outpatients with sickle cell disease
.
J Natl Med Assoc
.
2010
;
102
(
1
):
18
-
27
.
12.
Smith
WR
,
Penberthy
LT
,
Bovbjerg
VE
, et al
.
Daily assessment of pain in adults with sickle cell disease
.
Ann Intern Med
.
2008
;
148
(
2
):
94
-
101
.
13.
Brandow
AM
,
Farley
RA
,
Panepinto
JA
.
Neuropathic pain in patients with sickle cell disease
.
Pediatr Blood Cancer
.
2014
;
61
(
3
):
512
-
517
.
14.
Dampier
C
,
Palermo
TM
,
Darbari
DS
,
Hassell
K
,
Smith
W
,
Zempsky
W
.
AAPT diagnostic criteria for chronic sickle cell disease pain
.
J Pain
.
2017
;
18
(
5
):
490
-
498
.
15.
Ballas
SK
.
Pain management of sickle cell disease
.
Hematol Oncol Clin North Am
.
2005
;
19
(
5
):
785
-
802
.
16.
Ballas
SK
,
Gupta
K
,
Adams-Graves
P
.
Sickle cell pain: a critical reappraisal
.
Blood
.
2012
;
120
(
18
):
3647
-
3656
.
17.
Puri
L
,
Nottage
KA
,
Hankins
JS
,
Anghelescu
DL
.
State of the art management of acute vaso-occlusive pain in sickle cell disease
.
Paediatr Drugs
.
2018
;
20
(
1
):
29
-
42
.
18.
Brandow
AM
,
DeBaun
MR
.
Key components of pain management for children and adults with sickle cell disease
.
Hematol Oncol Clin North Am
.
2018
;
32
(
3
):
535
-
550
.
19.
Carroll
CP
,
Cichowitz
C
,
Yu
T
, et al
.
Predictors of acute care utilization and acute pain treatment outcomes in adults with sickle cell disease: the role of non-hematologic characteristics and baseline chronic opioid dose
.
Am J Hematol
.
2018
;
93
(
9
):
1127
-
1135
.
20.
Lee
P
,
Le Saux
M
,
Siegel
R
, et al
.
Racial and ethnic disparities in the management of acute pain in US emergency departments: meta-analysis and systematic review
.
Am J Emerg Med
.
2019
;
37
(
9
):
1770
-
1777
.
21.
Hoffman
KM
,
Trawalter
S
,
Axt
JR
,
Oliver
MN
.
Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between blacks and whites
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
16
):
4296
-
4301
.
22.
Tamayo-Sarver
JH
,
Hinze
SW
,
Cydulka
RK
,
Baker
DW
.
Racial and ethnic disparities in emergency department analgesic prescription
.
Am J Public Health
.
2003
;
93
(
12
):
2067
-
2073
.
23.
Kohli
DR
,
Li
Y
,
Khasabov
SG
, et al
.
Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids
.
Blood
.
2010
;
116
(
3
):
456
-
465
.
24.
Hillery
CA
,
Kerstein
PC
,
Vilceanu
D
, et al
.
Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease
.
Blood
.
2011
;
118
(
12
):
3376
-
3383
.
25.
Lei
J
,
Benson
B
,
Tran
H
,
Ofori-Acquah
SF
,
Gupta
K
.
Comparative analysis of pain behaviors in humanized mouse models of sickle cell nemia
.
PLoS One
.
2016
;
11
(
8
):
e0160608
.
26.
Cain
DM
,
Vang
D
,
Simone
DA
,
Hebbel
RP
,
Gupta
K
.
Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness
.
Br J Haematol
.
2012
;
156
(
4
):
535
-
544
.
27.
Zappia
KJ
,
Garrison
SR
,
Hillery
CA
,
Stucky
CL
.
Cold hypersensitivity increases with age in mice with sickle cell disease
.
Pain
.
2014
;
155
(
12
):
2476
-
2485
.
28.
Chang
W
,
Berta
T
,
Kim
YH
,
Lee
S
,
Lee
SY
,
Ji
RR
.
Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on Nav1.7, species differences, and regulation by paclitaxel
.
Neurosci Bull
.
2018
;
34
(
1
):
4
-
12
.
29.
Rostock
C
,
Schrenk-Siemens
K
,
Pohle
J
,
Siemens
J
.
Human vs mouse nociceptors - similarities and differences
.
Neuroscience
.
2018
;
387
:
13
-
27
.
30.
Sheahan
TD
,
Valtcheva
MV
,
McIlvried
LA
,
Pullen
MY
,
Baranger
DAA
.
Gereau RW Metabotropic glutamate receptor 2/3 (mGluR2/3) activation suppresses TRPV1 sensitization in mouse, but not human, sensory neurons
.
eNeuro
.
2018
;
5
(
2
). ENEURO.0412-17.2018.
31.
Sheahan
TD
,
Siuda
ER
,
Bruchas
MR
, et al
.
Inflammation and nerve injury minimally affect mouse voluntary behaviors proposed as indicators of pain
.
Neurobiol Pain
.
2017
;
2
:
1
-
12
.
32.
Zhang
X
,
Hartung
JE
,
Friedman
RL
,
Koerber
HR
,
Belfer
I
,
Gold
MS
.
Nicotine evoked currents in human primary sensory neurons
.
J Pain
.
2019
;
20
(
7
):
810
-
818
.
33.
Shiers
S
,
Klein
RM
,
Price
TJ
.
Quantitative differences in neuronal subpopulations between mouse and human dorsal root ganglia demonstrated with RNAscope in situ hybridization
.
Pain
.
2020
;
161
(
10
):
2410
-
2424
.
34.
Wangzhou
A
,
McIlvried
LA
,
Paige
C
, et al
.
Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia
.
Pain
.
2020
;
161
(
7
):
1497
-
1517
.
35.
Ray
PR
,
Wangzhou
A
,
Ghneim
N
, et al
.
A pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction
.
Brain Behav Immun
.
2020
;
89
:
559
-
568
.
36.
Ray
P
,
Torck
A
,
Quigley
L
, et al
.
Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research
.
Pain
.
2018
;
159
(
7
):
1325
-
1345
.
37.
Davidson
S
,
Copits
BA
,
Zhang
J
,
Page
G
,
Ghetti
A
,
Gereau
RW
.
Human sensory neurons: membrane properties and sensitization by inflammatory mediators
.
Pain
.
2014
;
155
(
9
):
1861
-
1870
.
38.
Valtcheva
MV
,
Copits
BA
,
Davidson
S
, et al
.
Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures
.
Nat Protoc
.
2016
;
11
(
10
):
1877
-
1888
.
39.
North
RY
,
Li
Y
,
Ray
P
, et al
.
Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons
.
Brain
.
2019
;
142
(
5
):
1215
-
1226
.
40.
Moy
JK
,
Hartung
JE
,
Duque
MG
, et al
.
Distribution of functional opioid receptors in human dorsal root ganglion neurons
.
Pain
.
2020
;
161
(
7
):
1636
-
1649
.
41.
Xiong
C
,
Chua
KC
,
Stage
TB
, et al
.
Human induced pluripotent stem cell derived sensory neurons are sensitive to the neurotoxic effects of paclitaxel
.
Clin Transl Sci
.
2021
;
14
(
2
):
568
-
581
.
42.
Schwab
AJ
,
Ebert
AD
.
Neurite aggregation and calcium dysfunction in iPSC-derived sensory neurons with Parkinson’s disease-related LRRK2 G2019S mutation
.
Stem Cell Rep
.
2015
;
5
(
6
):
1039
-
1052
.
43.
Nickolls
AR
,
Lee
MM
,
Espinoza
DF
, et al
.
Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells
.
Cell Rep
.
2020
;
30
(
3
):
932
-
946.e7
.
44.
Schrenk-Siemens
K
,
Wende
H
,
Prato
V
, et al
.
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors
.
Nat Neurosci
.
2015
;
18
(
1
):
10
-
16
.
45.
Mittal
K
,
Schrenk-Siemens
K
.
Lessons from iPSC research: insights on peripheral nerve disease
.
Neurosci Lett
.
2020
;
738
:
135358
.
46.
Wainger
BJ
,
Buttermore
ED
,
Oliveira
JT
, et al
.
Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
.
Nat Neurosci
.
2015
;
18
(
1
):
17
-
24
.
47.
Schoepf
CL
,
Zeidler
M
,
Spiecker
L
, et al
.
Selected ionotropic receptors and voltage-gated ion channels: more functional competence for human induced pluripotent stem cell (iPSC)-derived nociceptors
.
Brain Sci
.
2020
;
10
(
6
):
344
.
48.
Dionisi
C
,
Rai
M
,
Chazalon
M
,
Schiffmann
SN
,
Pandolfo
M
.
Primary proprioceptive neurons from human induced pluripotent stem cells: a cell model for afferent ataxias
.
Sci Rep
.
2020
;
10
(
1
):
7752
.
49.
Chambers
SM
,
Qi
Y
,
Mica
Y
, et al
.
Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors
.
Nat Biotechnol
.
2012
;
30
(
7
):
715
-
720
.
50.
Bourinet
E
,
Altier
C
,
Hildebrand
ME
,
Trang
T
,
Salter
MW
,
Zamponi
GW
.
Calcium-permeable ion channels in pain signaling
.
Physiol Rev
.
2014
;
94
(
1
):
81
-
140
.
51.
McDermott
LA
,
Weir
GA
,
Themistocleous
AC
, et al
.
Defining the functional role of NaV1.7 in Human Nociception
.
Neuron
.
2019
;
101
(
5
):
905
-
919.e8
.
52.
Welby
E
,
Ebert
AD
.
Diminished motor neuron activity driven by abnormal astrocytic EAAT1 glutamate transporter activity in spinal muscular atrophy is not fully restored after lentiviral SMN delivery
.
Glia
.
2023
;
71
(
5
):
1311
-
1332
.
53.
Sadler
KE
,
Zappia
KJ
,
O'Hara
CL
, et al
.
Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice
.
Pain
.
2018
;
159
(
8
):
1652
-
1663
.
54.
Allali
S
,
Maciel
TT
,
Hermine
O
,
de Montalembert
M
.
Innate immune cells, major protagonists of sickle cell disease pathophysiology
.
Haematologica
.
2020
;
105
(
2
):
273
-
283
.
55.
Silva-Junior
AL
,
Garcia
NP
,
Cardoso
EC
, et al
.
Immunological hallmarks of inflammatory status in vaso-occlusive crisis of sickle cell anemia patients
.
Front Immunol
.
2021
;
12
:
559925
.
56.
van Beers
EJ
,
Kato
GJ
.
Comment on "the influence of hydroxyurea on oxidative stress in sickle cell anemia"
.
Rev Bras Hematol Hemoter
.
2012
;
34
(
6
):
405
-
406
.
57.
Chies
JA
,
Hutz
MH
.
High frequency of the CCR5delta32 variant among individuals from an admixed Brazilian population with sickle cell anemia
.
Braz J Med Biol Res
.
2003
;
36
(
1
):
71
-
75
.
58.
Wu
H
,
Bogdanov
M
,
Zhang
Y
, et al
.
Hypoxia-mediated impaired erythrocyte Lands' Cycle is pathogenic for sickle cell disease
.
Sci Rep
.
2016
;
6
:
29637
.
59.
Biagioli
M
,
Pinto
M
,
Cesselli
D
, et al
.
Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
36
):
15454
-
15459
.
60.
Schelshorn
DW
,
Schneider
A
,
Kuschinsky
W
, et al
.
Expression of hemoglobin in rodent neurons
.
J Cereb Blood Flow Metab
.
2009
;
29
(
3
):
585
-
595
.
61.
Brown
N
,
Alkhayer
K
,
Clements
R
, et al
.
Neuronal hemoglobin expression and its relevance to multiple sclerosis neuropathology
.
J Mol Neurosci
.
2016
;
59
(
1
):
1
-
17
.
62.
Codrich
M
,
Bertuzzi
M
,
Russo
R
, et al
.
Neuronal hemoglobin affects dopaminergic cells' response to stress
.
Cell Death Dis
.
2017
;
8
(
1
):
e2538
.
63.
Somade
OT
,
Oyinloye
BE
,
Ajiboye
BO
,
Osukoya
OA
.
Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats
.
Biochem Biophys Rep
.
2023
;
34
:
101484
.
64.
Lutz
BM
,
Wu
S
,
Gu
X
, et al
.
Endothelin type A receptors mediate pain in a mouse model of sickle cell disease
.
Haematologica
.
2018
;
103
(
7
):
1124
-
1135
.
65.
Heimlich
JB
,
Speed
JS
,
O'Connor
PM
, et al
.
Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species
.
Br J Pharmacol
.
2016
;
173
(
2
):
386
-
395
.
66.
Hammerman
SI
,
Kourembanas
S
,
Conca
TJ
,
Tucci
M
,
Brauer
M
,
Farber
HW
.
Endothelin-1 production during the acute chest syndrome in sickle cell disease
.
Am J Respir Crit Care Med
.
1997
;
156
(
1
):
280
-
285
.
67.
Werdehoff
SG
,
Moore
RB
,
Hoff
CJ
,
Fillingim
E
,
Hackman
AM
.
Elevated plasma endothelin-1 levels in sickle cell anemia: relationships to oxygen saturation and left ventricular hypertrophy
.
Am J Hematol
.
1998
;
58
(
3
):
195
-
199
.
68.
Graido-Gonzalez
E
,
Doherty
JC
,
Bergreen
EW
,
Organ
G
,
Telfer
M
,
McMillen
MA
.
Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis
.
Blood
.
1998
;
92
(
7
):
2551
-
2555
.
69.
Rybicki
AC
,
Benjamin
LJ
.
Increased levels of endothelin-1 in plasma of sickle cell anemia patients
.
Blood
.
1998
;
92
(
7
):
2594
-
2596
.
70.
Karaa
A
,
Kamoun
WS
,
Clemens
MG
.
Oxidative stress disrupts nitric oxide synthase activation in liver endothelial cells
.
Free Radic Biol Med
.
2005
;
39
(
10
):
1320
-
1331
.
71.
Nishiyama
SK
,
Zhao
J
,
Wray
DW
,
Richardson
RS
.
Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction
.
J Appl Physiol
.
2017
;
122
(
2
):
354
-
360
.
72.
Ergul
S
,
Brunson
CY
,
Hutchinson
J
, et al
.
Vasoactive factors in sickle cell disease: in vitro evidence for endothelin-1-mediated vasoconstriction
.
Am J Hematol
.
2004
;
76
(
3
):
245
-
251
.
73.
Barr
TP
,
Kam
S
,
Khodorova
A
,
Montmayeur
JP
,
Strichartz
GR
.
New perspectives on the endothelin axis in pain
.
Pharmacol Res
.
2011
;
63
(
6
):
532
-
540
.
74.
Zhou
QL
,
Strichartz
G
,
Davar
G
.
Endothelin-1 activates ET(A) receptors to increase intracellular calcium in model sensory neurons
.
Neuroreport
.
2001
;
12
(
17
):
3853
-
3857
.
75.
Plant
TD
,
Zöllner
C
,
Kepura
F
, et al
.
Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C
.
Mol Pain
.
2007
;
3
:
35
.
76.
Yamamoto
H
,
Kawamata
T
,
Ninomiya
T
,
Omote
K
,
Namiki
A
.
Endothelin-1 enhances capsaicin-evoked intracellular Ca2+ response via activation of endothelin a receptor in a protein kinase Cepsilon-dependent manner in dorsal root ganglion neurons
.
Neuroscience
.
2006
;
137
(
3
):
949
-
960
.
77.
Zhou
Z
,
Davar
G
,
Strichartz
G
.
Endothelin-1 (ET-1) selectively enhances the activation gating of slowly inactivating tetrodotoxin-resistant sodium currents in rat sensory neurons: a mechanism for the pain-inducing actions of ET-1
.
J Neurosci
.
2002
;
22
(
15
):
6325
-
6330
.
78.
Zhou
Y
,
Tang
H
,
Liu
J
,
Dong
J
,
Xiong
H
.
Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices
.
J Neurochem
.
2011
;
116
(
3
):
406
-
414
.
79.
Menetski
J
,
Mistry
S
,
Lu
M
, et al
.
Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses
.
Neuroscience
.
2007
;
149
(
3
):
706
-
714
.
80.
Zhao
R
,
Pei
GX
,
Cong
R
,
Zhang
H
,
Zang
CW
,
Tian
T
.
PKC-NF-κB are involved in CCL2-induced Nav1.8 expression and channel function in dorsal root ganglion neurons
.
Biosci Rep
.
2014
;
34
(
3
):
e00111
.
81.
Ma
SB
,
Xian
H
,
Wu
WB
, et al
.
CCL2 facilitates spinal synaptic transmission and pain via interaction with presynaptic CCR2 in spinal nociceptor terminals
.
Mol Brain
.
2020
;
13
(
1
):
161
.
82.
Jin
J
,
Lin
J
,
Xu
A
, et al
.
CCL2: an important mediator between tumor cells and host cells in tumor microenvironment
.
Front Oncol
.
2021
;
11
:
722916
.
83.
Morris
CR
.
Mechanisms of vasculopathy in sickle cell disease and thalassemia
.
Hematology Am Soc Hematol Educ Program
.
2008
;
2008
(
1
):
177
-
185
.
84.
Morris
CR
.
Alterations of the arginine metabolome in sickle cell disease: a growing rationale for arginine therapy
.
Hematol Oncol Clin North Am
.
2014
;
28
(
2
):
301
-
321
.
85.
Morris
CR
,
Brown
LAS
,
Reynolds
M
, et al
.
Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain
.
Blood
.
2020
;
136
(
12
):
1402
-
1406
.
86.
Dembélé
KC
,
Veyrat-Durebex
C
,
Aldiouma
G
, et al
.
Sickle cell disease: metabolomic profiles of vaso-occlusive crisis in plasma and erythrocytes
.
J Clin Med
.
2020
;
9
(
4
):
1092
.
87.
Ahern
GP
,
Wang
X
,
Miyares
RL
.
Polyamines are potent ligands for the capsaicin receptor TRPV1
.
J Biol Chem
.
2006
;
281
(
13
):
8991
-
8995
.
88.
Martins
GLS
,
Nonaka
CKV
,
Rossi
EA
, et al
.
Evaluation of 2D and 3D erythroid differentiation protocols using sickle cell disease and healthy donor induced pluripotent stem cells
.
Cells
.
2023
;
12
(
8
):
1121
.
89.
Haro-Mora
JJ
,
Uchida
N
,
Demirci
S
,
Wang
Q
,
Zou
J
,
Tisdale
JF
.
Biallelic correction of sickle cell disease-derived induced pluripotent stem cells (iPSCs) confirmed at the protein level through serum-free iPS-sac/erythroid differentiation
.
Stem Cells Transl Med
.
2020
;
9
(
5
):
590
-
602
.
90.
Bhargava
N
,
Jaitly
S
,
Goswami
SG
,
Jain
S
,
Chakraborty
D
,
Ramalingam
S
.
Generation and characterization of induced pluripotent stem cell line (IGIBi001-A) from a sickle cell anemia patient with homozygous β-globin mutation
.
Stem Cell Res
.
2019
;
39
:
101484
.
91.
Zeidler
M
,
Tavares-Ferreira
D
,
Brougher
J
,
Price
TJ
,
Kress
M
.
NOCICEPTRA2.0 - a comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons
.
iScience
.
2023
;
26
(
12
):
108525
.
92.
Montezano
AC
,
Burger
D
,
Paravicini
TM
, et al
.
Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells
.
Circ Res
.
2010
;
106
(
8
):
1363
-
1373
.
93.
Duerrschmidt
N
,
Wippich
N
,
Goettsch
W
,
Broemme
HJ
,
Morawietz
H
.
Endothelin-1 induces NAD(P)H oxidase in human endothelial cells
.
Biochem Biophys Res Commun
.
2000
;
269
(
3
):
713
-
717
.
94.
Wedgwood
S
,
McMullan
DM
,
Bekker
JM
,
Fineman
JR
,
Black
SM
.
Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy
.
Circ Res
.
2001
;
89
(
4
):
357
-
364
.
95.
Masese
RV
,
Bulgin
D
,
Knisely
MR
, et al
.
Sex-based differences in the manifestations and complications of sickle cell disease: report from the Sickle Cell Disease Implementation Consortium
.
PLoS One
.
2021
;
16
(
10
):
e0258638
.
96.
Sadler
KE
,
Langer
SN
,
Menzel
AD
, et al
.
Gabapentin alleviates chronic spontaneous pain and acute hypoxia-related pain in a mouse model of sickle cell disease
.
Br J Haematol
.
2019
;
187
(
2
):
246
-
260
.
97.
Allali
S
,
de Montalembert
M
,
Rignault-Bricard
R
, et al
.
IL-6 levels are dramatically high in the sputum from children with sickle cell disease during acute chest syndrome
.
Blood Adv
.
2020
;
4
(
24
):
6130
-
6134
.
98.
Musa
BO
,
Onyemelukwe
GC
,
Hambolu
JO
,
Mamman
AI
,
Isa
AH
.
Pattern of serum cytokine expression and T-cell subsets in sickle cell disease patients in vaso-occlusive crisis
.
Clin Vaccine Immunol
.
2010
;
17
(
4
):
602
-
608
.
99.
Vincent
L
,
Vang
D
,
Nguyen
J
, et al
.
Mast cell activation contributes to sickle cell pathobiology and pain in mice
.
Blood
.
2013
;
122
(
11
):
1853
-
1862
.
100.
Vang
D
,
Paul
JA
,
Nguyen
J
, et al
.
Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice
.
Haematologica
.
2015
;
100
(
12
):
1517
-
1525
.
101.
Wyszynski
DF
,
Baldwin
CT
,
Cleves
MA
, et al
.
Polymorphisms near a chromosome 6q QTL area are associated with modulation of fetal hemoglobin levels in sickle cell anemia
.
Cell Mol Biol (Noisy-le-Grand)
.
2004
;
50
(
1
):
23
-
33
.
102.
Xiao
L
,
Andemariam
B
,
Taxel
P
, et al
.
Loss of bone in sickle cell trait and sickle cell disease female mice ss associated with reduced IGF-1 in bone and serum
.
Endocrinology
.
2016
;
157
(
8
):
3036
-
3046
.
103.
Rivera
A
.
Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists
.
Am J Physiol Cell Physiol
.
2007
;
293
(
3
):
C960
-
C966
.
104.
Black
JA
,
Frézel
N
,
Dib-Hajj
SD
,
Waxman
SG
.
Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn
.
Mol Pain
.
2012
;
8
:
82
.
105.
Sadler
KE
,
Moehring
F
,
Shiers
SI
, et al
.
Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice
.
Sci Transl Med
.
2021
;
13
(
595
):
eabd770
.
106.
Vandorpe
DH
,
Rivera
A
,
Ganter
M
, et al
.
Purinergic signaling is essential for full Psickle activation by hypoxia and by normoxic acid pH in mature human sickle red cells and in vitro-differentiated cultured human sickle reticulocytes
.
Pflugers Arch
.
2022
;
474
(
5
):
553
-
565
.
107.
Rooks
H
,
Brewin
J
,
Gardner
K
, et al
.
A gain of function variant in PIEZO1 (E756del) and sickle cell disease
.
Haematologica
.
2019
;
104
(
3
):
e91
-
e93
.
108.
Jhun
EH
,
Hu
X
,
Sadhu
N
, et al
.
Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease
.
Pharmacogenomics
.
2018
;
19
(
5
):
401
-
411
.
109.
Ehlers
VL
,
Sadler
KE
,
Stucky
CL
.
Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain
.
Pain
.
2023
;
164
(
8
):
1874
-
1886
.
You do not currently have access to this content.
Sign in via your Institution