• Cold exposure induces complement activation and vaso-occlusive pain crisis in sickle mice.

  • Inhibition of C5a generation with anti-C5 or signaling with anti-C5aR antibody inhibits cold-induced VOE and hyperalgesia in sickle mice.

Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.

1.
Platt
OS
,
Thorington
BD
,
Brambilla
DJ
, et al
.
Pain in sickle cell disease. Rates and risk factors
.
N Engl J Med
.
1991
;
325
(
1
):
11
-
16
.
2.
Sagi
V
,
Song-Naba
WL
,
Benson
BA
,
Joshi
SS
,
Gupta
K
.
Mouse models of pain in sickle cell disease
.
Curr Protoc Neurosci
.
2018
;
85
(
1
):
e54
.
3.
Hebbel
RP
,
Belcher
JD
,
Vercellotti
GM
.
The multifaceted role of ischemia/reperfusion in sickle cell anemia
.
J Clin Invest
.
2020
;
130
(
3
):
1062
-
1072
.
4.
Kalambur
VS
,
Mahaseth
H
,
Bischof
JC
, et al
.
Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy
.
Am J Hematol
.
2004
;
77
(
2
):
117
-
125
.
5.
Cain
DM
,
Vang
D
,
Simone
DA
,
Hebbel
RP
,
Gupta
K
.
Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness
.
Br J Haematol
.
2012
;
156
(
4
):
535
-
544
.
6.
Sadler
KE
,
Langer
SN
,
Menzel
AD
, et al
.
Gabapentin alleviates chronic spontaneous pain and acute hypoxia-related pain in a mouse model of sickle cell disease
.
Br J Haematol
.
2019
;
187
(
2
):
246
-
260
.
7.
Resar
LM
,
Oski
FA
.
Cold water exposure and vaso-occlusive crises in sickle cell anemia
.
J Pediatr
.
1991
;
118
(
3
):
407
-
409
.
8.
Jordan
JE
,
Montalto
MC
,
Stahl
GL
.
Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury
.
Circulation
.
2001
;
104
(
12
):
1413
-
1418
.
9.
La Bonte
LR
,
Dokken
B
,
Davis-Gorman
G
,
Stahl
GL
,
McDonagh
PF
.
The mannose-binding lectin pathway is a significant contributor to reperfusion injury in the type 2 diabetic heart
.
Diab Vasc Dis Res
.
2009
;
6
(
3
):
172
-
180
.
10.
Orsini
F
,
Chrysanthou
E
,
Dudler
T
, et al
.
Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1
.
J Neuroinflammation
.
2016
;
13
(
1
):
213
.
11.
Panagiotou
A
,
Trendelenburg
M
,
Osthoff
M
.
The lectin pathway of complement in myocardial ischemia/reperfusion injury-review of its significance and the potential impact of therapeutic interference by C1 esterase inhibitor
.
Front Immunol
.
2018
;
9
:
1151
.
12.
Schwaeble
WJ
,
Lynch
NJ
,
Clark
JE
, et al
.
Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
18
):
7523
-
7528
.
13.
Arumugam
TV
,
Shiels
IA
,
Woodruff
TM
,
Granger
DN
,
Taylor
SM
.
The role of the complement system in ischemia-reperfusion injury
.
Shock
.
2004
;
21
(
5
):
401
-
409
.
14.
de Vries
B
,
Walter
SJ
,
Peutz-Kootstra
CJ
,
Wolfs
TG
,
van Heurn
LW
,
Buurman
WA
.
The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia-reperfusion injury
.
Am J Pathol
.
2004
;
165
(
5
):
1677
-
1688
.
15.
Farrar
CA
,
Asgari
E
,
Schwaeble
WJ
,
Sacks
SH
.
Which pathways trigger the role of complement in ischaemia/reperfusion injury?
.
Front Immunol
.
2012
;
3
:
341
.
16.
Gavriilaki
E
,
Mainou
M
,
Christodoulou
I
, et al
.
In vitro evidence of complement activation in patients with sickle cell disease
.
Haematologica
.
2017
;
102
(
12
):
e481
-
e482
.
17.
Lombardi
E
,
Matte
A
,
Risitano
AM
, et al
.
Factor H interferes with the adhesion of sickle red cells to vascular endothelium: a novel disease-modulating molecule
.
Haematologica
.
2019
;
104
(
5
):
919
-
928
.
18.
Wang
RH
,
Phillips
G
,
Medof
ME
,
Mold
C
.
Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients
.
J Clin Invest
.
1993
;
92
(
3
):
1326
-
1335
.
19.
Merle
NS
,
Grunenwald
A
,
Rajaratnam
H
, et al
.
Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles
.
JCI Insight
.
2018
;
3
(
12
):
e96910
.
20.
Dimitrov
JD
,
Roumenina
LT
,
Perrella
G
,
Rayes
J
.
Basic mechanisms of hemolysis-associated thrombo-inflammation and immune dysregulation
.
Arterioscler Thromb Vasc Biol
.
2023
;
43
(
8
):
1349
-
1361
.
21.
Quadros
AU
,
Cunha
TM
.
C5a and pain development: an old molecule, a new target
.
Pharmacol Res
.
2016
;
112
:
58
-
67
.
22.
Clark
JD
,
Qiao
Y
,
Li
X
,
Shi
X
,
Angst
MS
,
Yeomans
DC
.
Blockade of the complement C5a receptor reduces incisional allodynia, edema, and cytokine expression
.
Anesthesiology
.
2006
;
104
(
6
):
1274
-
1282
.
23.
Griffin
RS
,
Costigan
M
,
Brenner
GJ
, et al
.
Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity
.
J Neurosci
.
2007
;
27
(
32
):
8699
-
8708
.
24.
Jang
JH
,
Clark
DJ
,
Li
X
,
Yorek
MS
,
Usachev
YM
,
Brennan
TJ
.
Nociceptive sensitization by complement C5a and C3a in mouse
.
Pain
.
2010
;
148
(
2
):
343
-
352
.
25.
Twining
CM
,
Sloane
EM
,
Schoeniger
DK
, et al
.
Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization
.
J Pain
.
2005
;
6
(
3
):
174
-
183
.
26.
Francis
WG
,
Womack
CR
.
Serum complement activity in normal individuals and patients with sickle cell hemoglobin abnormalities
.
Am J Med Technol
.
1967
;
33
(
2
):
77
-
86
.
27.
Roumenina
LT
,
Chadebech
P
,
Bodivit
G
, et al
.
Complement activation in sickle cell disease: dependence on cell density, hemolysis and modulation by hydroxyurea therapy
.
Am J Hematol
.
2020
;
95
(
5
):
456
-
464
.
28.
Vercellotti
GM
,
Dalmasso
AP
,
Schaid
TR
, et al
.
Critical role of C5a in sickle cell disease
.
Am J Hematol
.
2019
;
94
(
3
):
327
-
337
.
29.
Belcher
JD
,
Nguyen
J
,
Chen
C
, et al
.
MASP-2 and MASP-3 inhibitors block complement activation, inflammation, and microvascular stasis in a murine model of vaso-occlusion in sickle cell disease
.
Transl Res
.
2022
;
249
:
1
-
12
.
30.
Khasabova
I
,
Juliette
J
,
Rogness
VM
, et al
.
A model of painful vaso-occlusive crisis in mice with sickle cell disease
.
Blood
.
2022
;
140
(
16
):
1826
-
1830
.
31.
Nolan
VG
,
Zhang
Y
,
Lash
T
,
Sebastiani
P
,
Steinberg
MH
.
Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a case-crossover study
.
Br J Haematol
.
2008
;
143
(
3
):
433
-
438
.
32.
Smith
WR
,
Bauserman
RL
,
Ballas
SK
, et al
.
Climatic and geographic temporal patterns of pain in the Multicenter Study of Hydroxyurea
.
Pain
.
2009
;
146
(
1-2
):
91
-
98
.
33.
Wu
LC
,
Sun
CW
,
Ryan
TM
,
Pawlik
KM
,
Ren
J
,
Townes
TM
.
Correction of sickle cell disease by homologous recombination in embryonic stem cells
.
Blood
.
2006
;
108
(
4
):
1183
-
1188
.
34.
Belcher
JD
,
Chen
C
,
Nguyen
J
, et al
.
Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease
.
Blood
.
2014
;
123
(
3
):
377
-
390
.
35.
Chaplan
SR
,
Bach
FW
,
Pogrel
JW
,
Chung
JM
,
Yaksh
TL
.
Quantitative assessment of tactile allodynia in the rat paw
.
J Neurosci Methods
.
1994
;
53
(
1
):
55
-
63
.
36.
Belcher
JD
,
Vineyard
JV
,
Bruzzone
CM
, et al
.
Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease
.
J Mol Med
.
2010
;
88
(
7
):
665
-
675
.
37.
Smith
WR
,
Coyne
P
,
Smith
VS
,
Mercier
B
.
Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis
.
Pain Manag Nurs
.
2003
;
4
(
3
):
106
-
111
.
38.
Haviland
DL
,
McCoy
RL
,
Whitehead
WT
, et al
.
Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung
.
J Immunol
.
1995
;
154
(
4
):
1861
-
1869
.
39.
Kaul
DK
,
Hebbel
RP
.
Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice
.
J Clin Invest
.
2000
;
106
(
3
):
411
-
420
.
40.
Polanowska-Grabowska
R
,
Wallace
K
,
Field
JJ
, et al
.
P-selectin-mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease
.
Arterioscler Thromb Vasc Biol
.
2010
;
30
(
12
):
2392
-
2399
.
41.
Kutlar
A
,
Kanter
J
,
Liles
DK
, et al
.
Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis
.
Am J Hematol
.
2019
;
94
(
1
):
55
-
61
.
42.
Veluswamy
S
,
Shah
P
,
Khaleel
M
, et al
.
Progressive vasoconstriction with sequential thermal stimulation indicates vascular dysautonomia in sickle cell disease
.
Blood
.
2020
;
136
(
10
):
1191
-
1200
.
43.
Brandow
AM
,
Hansen
K
,
Nugent
M
,
Pan
A
,
Panepinto
JA
,
Stucky
CL
.
Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events
.
Pain
.
2019
;
160
(
2
):
407
-
416
.
44.
Brandow
AM
,
Stucky
CL
,
Hillery
CA
,
Hoffmann
RG
,
Panepinto
JA
.
Patients with sickle cell disease have increased sensitivity to cold and heat
.
Am J Hematol
.
2013
;
88
(
1
):
37
-
43
.
45.
Khasabova
IA
,
Uhelski
M
,
Khasabov
SG
,
Gupta
K
,
Seybold
VS
,
Simone
DA
.
Sensitization of nociceptors by prostaglandin E(2)-glycerol contributes to hyperalgesia in mice with sickle cell disease
.
Blood
.
2019
;
133
(
18
):
1989
-
1998
.
46.
Kohli
DR
,
Li
Y
,
Khasabov
SG
, et al
.
Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids
.
Blood
.
2010
;
116
(
3
):
456
-
465
.
47.
Michaels
LA
,
Ohene-Frempong
K
,
Zhao
H
,
Douglas
SD
.
Serum levels of substance P are elevated in patients with sickle cell disease and increase further during vaso-occlusive crisis
.
Blood
.
1998
;
92
(
9
):
3148
-
3151
.
48.
Qari
MH
,
Dier
U
,
Mousa
SA
.
Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease
.
Clin Appl Thromb Hemost
.
2012
;
18
(
2
):
195
-
200
.
49.
Khasabova
IA
,
Gable
J
,
Johns
M
, et al
.
Inhibition of DAGLβ as a therapeutic target for pain in sickle cell disease
.
Haematologica
.
2023
;
108
(
3
):
859
-
869
.
50.
Garrison
SR
,
Kramer
AA
,
Gerges
NZ
,
Hillery
CA
,
Stucky
CL
.
Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors
.
Mol Pain
.
2012
;
8
:
62
.
51.
Hillery
CA
,
Kerstein
PC
,
Vilceanu
D
, et al
.
Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease
.
Blood
.
2011
;
118
(
12
):
3376
-
3383
.
52.
Uhelski
ML
,
Gupta
K
,
Simone
DA
.
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis
.
Pain
.
2017
;
158
(
9
):
1711
-
1722
.
53.
Campbell
CM
,
Carroll
CP
,
Kiley
K
, et al
.
Quantitative sensory testing and pain-evoked cytokine reactivity: comparison of patients with sickle cell disease to healthy matched controls
.
Pain
.
2016
;
157
(
4
):
949
-
956
.
54.
Campbell
CM
,
Moscou-Jackson
G
,
Carroll
CP
, et al
.
An evaluation of central sensitization in patients with sickle cell disease
.
J Pain
.
2016
;
17
(
5
):
617
-
627
.
55.
Lei
J
,
Benson
B
,
Tran
H
,
Ofori-Acquah
SF
,
Gupta
K
.
Comparative analysis of pain behaviours in humanized mouse models of sickle cell anemia
.
PLoS One
.
2016
;
11
(
8
):
e0160608
.
56.
Thuptimdang
W
,
Shah
P
,
Khaleel
M
, et al
.
Vasoconstriction response to mental stress in sickle cell disease: the role of the cardiac and vascular baroreflexes
.
Front Physiol
.
2021
;
12
:
698209
.
57.
Ispasanie
E
,
Muri
L
,
Schubart
A
, et al
.
Alternative complement pathway inhibition does not abrogate meningococcal killing by serum of vaccinated individuals
.
Front Immunol
.
2021
;
12
:
747594
.
58.
Muri
L
,
Ispasanie
E
,
Schubart
A
, et al
.
Alternative complement pathway inhibition abrogates pneumococcal opsonophagocytosis in vaccine-naive, but not in vaccinated individuals
.
Front Immunol
.
2021
;
12
:
732146
.
You do not currently have access to this content.
Sign in via your Institution