Bruton's tyrosine kinases inhibitors (BTKis) represent major advances in CLL therapy. However resistance to this form of therapy is emerging, and such patients often progress more rapidly. Hence there is an important need for therapies that address resistance. Microenvironmental input like IL-4 is critical for CLL disease progression. Compared with normal B cells, CLL cells exhibit significantly higher levels of surface membrane (sm) IL-4 receptor (IL4-R) and contain increased amounts of pSTAT6, a downstream mediator of IL-4R signaling. IL-4 stimulation of CLL B cells suppresses smCXCR4 and increases smIgM, thus promotes CLL cell retention and expansion.

In this study, we aimed to examine if smIL-4R expression, IL4R signaling, and IL-4-producing cells are altered in patients sensitive or resistant to BTKis. To do so, T and B cell subset changes were studied overtime in 12 acalabrutinib-treated CLL patients, 6 zanubrutinib-treated CLL patients, 30 ibrutinib-sensitive and 5 ibrutinib-resistant CLL patients, 4 of which exhibited BTK mutations.

Consistent with only ibrutinib inhibiting T-cell kinase (ITK), T-cell subset analyses revealed no changes in Th1, Th2, Th17, Th9, and Th22 cells after zanubrutinib or acalabrutinib treatment. In contrast, a Th1-biased T-cell immunity was observed in patients responsive to ibrutinib. In patients progressing on ibrutinib, significantly reduced Th2 T cells were found during the resistant as well as sensitive periods. In an in vitro T-cell function assay using T cells collected before and after the treatment with each BTKi, only ibrutinib treated patients exhibited a reduced ability of T cells to support CLL B cell survival.

We next studied changes in CLL B cells, including numbers of IL-4, -10 and -13 producing B cells after BTKi treatment. IL-13 producing CLL B cells were not changed. IL-10 producing CLL B cells were reduced in both ibrutinib sensitive and resistant patients, but not in zanubrutinib or acalabrutinib treated patients. Importantly, IL-4 producing CLL B cells were significantly decreased in patients treated with all 3 BTKi. Significantly reduced smIL-4R levels, impaired IL-4R signaling, decreased smIgM and increased smCXCR4 were also seen in patients treated with each BTKi. To understand the mechanism responsible for inhibition of IL-4 production in CLL cells treated with BTKis, we stimulated CLL cells through IgM, Toll-like receptor and CD40L, finding that only anti-IgM stimulation significantly increased IL-4 production and p-STAT6 induction.

We then explored the function of IL-4. IL-4 enhanced CLL B cell survival in vitro and this action was blocked by all 3 BTKis. Moreover, adhesion of CLL B cells to smIL-4R expressing stromal cells was decreased by IL-4 and IL-4R neutralizing antibodies, especially in M-CLL cases. In in vivo studies transferring autologous T cells and CLL PBMCs into alymphoid mice, we found less CLL B cells in mouse spleens post ibrutinib than zanubrutinib or acalabrutinib treatment. This might be due to the suppressed Th2 cells found only in ibrutinib, while IL-4 producing B cells were reduced in all 3 BTKi treated mice. These results support the idea that IL-4 promotes CLL B cell adhesion and growth in tissues.

Finally, we investigated the IL-4/IL-4R axis in ibrutinib-resistant patients. Although IL-4 producing T cells remain reduced during the sensitive and resistant phases, CLL B cell production of IL-4 and expression of and signaling through smIL-4R returned when patients developed ibrutinib-resistance. When comparing paired ibrutinib-sensitive and -resistant CLL B cells collected from 3 patients in a xenograft model that requires T cell help, we found ibrutinib-resistant CLL B cells grew in vivo with only minimal (~15%) numbers of autologous T cells compared to B cells collected from ibrutinib-sensitive phase; this suggested a reduced requirement for T-cell help for growth of ibrutinib-resistant CLL cells.

In summary, we found IL-4 is a key survival factor in the CLL microenvironment that also improves leukemia cell adhesion to stromal cells expressing smIL-4R. IL-4 production and signaling can be stimulated in CLL B cells through the B-cell receptor, and are consistently blocked by BTKis. Moreover, the recovered ability of ibrutinib-resistant CLL B cells to produce and respond to IL-4 leads to disease progression, suggesting blocking the IL-4/IL-4R axis is a potential treatment for ibrutinib-resistant CLL patients.

Disclosures

Chen:Pharmacyclics: Research Funding; Beigene: Research Funding; Verastem: Research Funding; ArgenX: Research Funding. Tam:Abbvie, Janssen: Research Funding; Abbvie, Janssen, Beigene, Roche, Novartis: Honoraria. Ramsay:Celgene Corporation: Research Funding; Roche Glycart AG: Research Funding. Kolitz:Boeringer-Ingelheim: Research Funding; Roche: Research Funding; Astellas: Research Funding. Zhou:BeiGene: Employment. Barrientos:Genentech: Consultancy; Gilead: Consultancy; Janssen: Consultancy; Abbvie: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding. Rai:Pharmacyctics: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Cellectis: Membership on an entity's Board of Directors or advisory committees; Genentech/Roche: Membership on an entity's Board of Directors or advisory committees.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution