Multiple Myeloma (MM) is a plasma cell malignancy vulnerable to epigenetic intervention, with histone deacetylases (HDACs) emerging as the most promising epigenetic targets in combination with current anti-myeloma agents. Pan-HDAC inhibitors are effective as therapeutic agents both in preclinical and clinical setting; however, there is an increasing emphasis on understanding the biological and molecular roles of individual HDACs to limit toxicities observed with pan-HDAC inhibitors. Based on correlation with patient outcome in three independent myeloma datasets, we have evaluated the functional role of HDAC8, a member of Class I HDAC isoenzymes, in MM. Unlike other isoforms, there is limited information about molecular and epigenomic functions of HDAC8. We have previously confirmed expression of HDAC8 in a large panel of MM cell lines, where it is localized predominantly to cytoplasm. Moreover, genetic and pharmacological modulation of HDAC8 with RNAi and specific inhibitor PCI-34051 resulted in a significant inhibition of myeloma cell proliferation and decrease in colony formation (p<.001). HDAC8 inhibition led to an increase in the ongoing spontaneous and radiation-induced DNA damage in MM cells by affecting DNA repair via the homologous recombination (HR) pathway, suggesting a novel function of HDAC8 in promoting HR and DNA repair in MM cells. Using laser micro-irradiation in MM1S and U2OS cells, we observed HDAC8 recruitment to DSBs sites and its co-localization with Rad51 and Scm3, a member of cohesin complex. A transcriptomic analysis of HDAC8 knock-down cells also shows perturbation of number of cytoskeleton-related genes confirming significant role of HAD8 in cytoskeleton rearrangement in MM. Mass-spectrometry analysis to identify the HDAC8 substrates in MM cells is currently ongoing. Classical pan-HDACi, such as SAHA (vorinostat), bind to HDAC8 with substantially diminished activity (IC50 = 2 μM), reflecting a unique binding site of this isoform. To discover and validate new small molecules with HDAC8 subtype selectivity, we have explored the efficacy of OJI-1, a novel selective and potent HDAC8 inhibitor (IC50 = 0.8 nM) with modest inhibition of HDAC6 (1200 nM). Treatment with OJI-1 selectively impact cell viability of a large panel of MM cell lines (n=20) in a time and dose dependent manner, while sparing healthy donors PBMC both in resting and activated state (n=3). The significantly higher IC50 observed in PBMCs suggests a favorable therapeutic index. Western blotting analysis confirmed target selectivity with significant time and dose dependent decrease in H3 and H4 acetylation in MM cells treated with OJI-1. Moreover, pharmacological inhibition of HDAC8 specifically inhibited HR but not non-homologous end joining. These data suggest that targeting of HDAC8 using OJI-1 could be effective treatment approach in MM. Based on molecular data combination studies and in vivo evaluation are ongoing. In conclusion, our results provide insight into the role of HDAC8 in DNA stability and cell growth and viability which can be exploited in future for therapeutic application alone and in combination in MM.

Disclosures

Munshi:Takeda: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Abbvie: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Adaptive: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy; Oncopep: Consultancy; Celgene: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution