Maturation of erythroid progenitors is associated with significant changes in gene expression in the context of a nucleus that dramatically decreases in size in preparation for enucleation, and is regulated by the coordinated action of transcriptional regulators and epigenetic modifiers. In eukaryotes, all DNA is bound by histone proteins into chromatin. Posttranslational modifications of the N-terminal "tails" of these proteins are key regulators of chromatin structure and gene expression. We hypothesized that terminal erythroid maturation is associated with changes in the abundance of specific histone posttranslational modifications. To address this hypothesis, we utilized mass spectrometry to perform an unbiased assessment of the abundance histone post translational modifications in maturing erythroblasts. We cultured peripheral blood CD34+ hematopoietic stem and progenitor cells (HSPCs) down the erythroid lineage using a semi-synchronous culture system (as outlined in Gautier et al. Cell Reports 2016), and sent cells for mass spectrometry on day 7 of erythroid maturation, when the cells are predominately basophilic erythroblasts, and on day 12 of erythroid maturation, when they are predominately poly- and ortho- chromatic erythroblasts. The maturation stage of the cells was confirmed by both cytospins and imaging flow cytometric analyses. Two independent replicates were performed and key results confirmed by western blotting. Terminal erythroid maturation was associated with a dramatic decline in the abundance of multiple histone marks associated with active transcription elongation, including Histone H3 lysine 36 di- and tri-methylation (H3K36me2, H3K36me3), and Histone H3 Lysine 79 di-methylation (H3K79me2). Surprisingly, this was not accompanied by an increase in the abundance of repressive heterochromatin marks (H3K27me3, H3K9me3, and H4K20me3) or a global decline in histone acetylation. Histone H4 lysine 16 acetylation (H4K16Ac), associated with RNA polymerase II pause release (Kapoor-Vazirani MCB 2011) significantly declined, but multiple acetylation marks including H3K36Ac and H3K23Ac increased in abundance. As expected, the abundance histone H4 lysine 20 mono-methylation (H4K20me1), which is implicated both in erythroblast chromatin condensation (Malik Cell Reports 2017) and the regulation of RNA Polymerase II pausing (Kapoor-Vazirani MCB 2011) also significantly increased. Consistent with these data, integration of RNA-seq and ChIP-seq data identified 3,058 genes whose expression decreased from basophilic erythroblast to orthochromatic erythroblasts, which lost enrichment for H3K36me3 (mark of active elongation) without accumulating H3K27me3 (heterochromatin mark).

Based on these data, we hypothesized that RNA polymerase II pausing is a critical regulator of gene expression in maturing erythroblasts. RNA Polymerase II (Pol II) pausing is a highly regulated mechanism of transcriptional regulation, whereby transcription is initiated, but pauses 30-60bp downstream of the transcription start site. For paused Pol II to be released into active elongation, pTEFb must hyper-phosphorylate Serine 2 of the Pol II c-terminal domain (CTD). Importantly, pTEFb can be directed to specific loci through interaction with transcription factors, including GATA1 (Elagib Blood 2008; Bottardi NAR 2011). Hexim1 is a key regulator of Pol II pausing that sequesters pTEFb and inhibits its action. Consistent with a central role for Pol II pausing dynamics in the regulation of terminal erythroid maturation, Hexim1 is highly expressed in erythroid cells compared to most other cell types and its expression increases during terminal erythroid maturation. Conversely, the expression of CCNT1 and CKD9, the components of pTEFb, decline during terminal maturation, and the level of elongation competent (Ser2 and Ser2/Ser5 CTD phosphorylated) Pol II also decreases dramatically. To gain insights into the function of Pol II pausing in maturing erythroblasts, we induced Hexim1 expression in HUDEP2 cells (Kurita PLoS One 2013) using hexamethane bisacetamide (HMBA). HMBA treatment increased Hexim1 levels a dose dependent manner and was associated with gene expression and phenotypic changes suggestive of accelerated erythroid maturation. Together, these data suggest that RNA Pol II pausing dynamics are an important regulator of terminal erythroid maturation.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution