Background

CCS1477 is a first in class potent, selective and orally bioavailable inhibitor of the bromodomains of p300 and CBP, two closely related histone acetyl transferases with oncogenic roles in haematological malignancies. In pre-clinical studies, CCS1477 was found to be a potent inhibitor of cell proliferation in acute myeloid leukaemia (AML) multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) cell lines. In primary patient AML blast cells CCS1477 inhibited proliferation through a combination of cell cycle arrest at the G1/S transition and an induction of differentiation (up-regulation of CD11b and CD86). CCS1477 has significant anti-tumour activity, inducing tumour regressions in xenograft models of AML and MM. These effects were accompanied by significant reductions in tumour MYC and IRF4 expression. Additionally, there are molecular features of certain haematological malignancies that are likely to increase the sensitivity to p300/CBP inhibition with CCS1477. For example, in B-cell lymphomas there are frequent loss of function mutations in CBP that are associated with heightened sensitivity to pre-clinical inhibition of corresponding non-mutated p300.

CCS1477 represents a novel and differentiated approach to inhibiting cell proliferation and survival and offers a potential new therapeutic option for patients who have relapsed or are refractory to current standard of care therapies in AML, MM or NHL.

Study Design and Methods

This study is the first time that CCS1477 is being dosed in patients with haematological malignancies. The Phase I/IIa study aims to determine the maximum tolerated dose (MTD) and/or recommended Phase II dose (RP2D) and schedule(s) of CCS1477 and investigate clinical activity of CCS1477 monotherapy in patients with haematological malignancies. This study will also characterise the pharmacokinetics (PK) of CCS1477 and explore potential biological activity by assessing pharmacodynamic and exploratory biomarkers.

The trial aims to enrol approximately 90 patients and is currently recruiting in the UK with plans to open additional sites in the USA. Key inclusion criteria include patients with confirmed (per standard disease specific diagnostic criteria), relapsed or refractory haematological malignancies (AML, MM and NHL). Patients must have received standard therapy which for the majority of therapeutic indications is at least 2 prior lines of therapy. Single dose and steady state pharmacokinetics will be determined in all patients.

AML response will be measured in bone marrow samples. Myeloma response will be evaluated according to the 'International Myeloma Working Group Response Criteria' based on changes in M protein in blood and/or urine, changes in serum free light chains if measurable, and changes on imaging and/or bone marrow if applicable and according to the guidelines. In NHL patients, tumour assessments will be done for measurable disease, non-measurable disease, and new lesions on CT (or magnetic resonance imaging [MRI]) and/or combined with visual assessment of [18F]2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) for response assessment per recent International Working Group consensus criteria (RECIL 2017), until progression

The study will begin with two parallel monotherapy dose-escalation arms; Arm 1: Relapsed or refractory NHL and MM; Arm2: Relapsed or refractory AML/high-risk MDS. Once a recommended phase 2 dose/schedule is reached, three monotherapy expansion arms will be opened in AML/high-risk MDS (15 patients), MM (15 patients) and NHL (30 patients). Blood samples along with bone marrow biopsies and aspirates will be collected for exploratory biomarker analysis to understand mechanisms of response to treatment or disease progression. This will include the analysis of tumour-specific and circulating biomarkers, such as tumour DNA, mRNA, proteins or metabolites. In NHL patients, analysis of CBP (and p300) mutations will be undertaken to allow retrospective correlation with tumour response and to determine if loss of function mutations in the genes for either proteins can be utilised as response predictive biomarkers in future studies.

Disclosures

Clegg:CellCentric Ltd: Employment, Equity Ownership. Brooks:CellCentric Ltd: Employment, Equity Ownership. Ashby:CellCentric Ltd: Employment, Equity Ownership. Pegg:CellCentric Ltd: Employment, Equity Ownership. West:CellCentric Ltd: Employment, Equity Ownership. Somervaille:Novartis: Consultancy. Knapper:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Daiichi Sankyo: Honoraria; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Tolero: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees. Davies:ADCT Therapeutics: Honoraria, Research Funding; MorphoSys AG: Honoraria, Membership on an entity's Board of Directors or advisory committees; BioInvent: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Karyopharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Honoraria, Research Funding; GSK: Research Funding; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Research Funding; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution