Introduction. Prophylaxis with factor concentrates reduces bleeding events and improves quality of life for adults and children with severe hemophilia. However, the optimal dosing and infusion frequency is not yet established. Integration of PK data into decision making is gaining support, in particular at the transition between conventional and EHL products. Here we report about 29 PK data of patients affected by hemophilia treated at our centre since childhood. Improved quality of life was our first aim, supposed that decreasing frequency of infusions or increasing the target through factor level allows a more active life without increased risk of bleeding.

Patients' characteristics and methods. 18 patients (62%) were ≤ 18 years of age at PK time. 16 were affected by severe hemophilia A, 5 by moderate hemophilia A, 6 by severe hemophilia B and 2 by moderate hemophilia B. At PK time, 28 patients were on prophylaxis and 1 was on demand with recombinant factor IX. Median age at onset of prophylaxis was 9 years (range 3 months-38 years). Genetic assessment was available in 24 patients. Of these, 37.5% and 62.5% were carriers of null and not null mutations respectively. 4 patients were undergone to PK with standard products (1 Octocog alfa, 1 Simoctocog alfa, 1 Octocog alfa-Kovaltry®, 1 Turoctocog alfa) in order to define timing and dosage of successive infusions, while 25 patients switched to EHL factors (15 Efmoroctocog alfa, 2 Ionoctocog alfa, 7 Albutrepenonacog alfa, 1 Eftrenonacog alfa). In 15 patients a population-based PK (popPK) according to WAPPS-Hemo program was also performed. The annualized bleeding rate (ABR) was counted from patient's home bleeding records for one year before PK until now.

Results. According to PK data, 21 patients (75%) decreased infusion frequency (100% hemophilia B and 67% hemophilia A patients). The remaining 7 hemophilia A patients maintained the same timing in order to increase the through factor level. Notably, 1 hemophilia B patient switched from on demand treatment to prophylaxis with EHL product due to the more acceptable schedule. 66% of null mutation patients and 73% of not null mutation patients decreased timing. Of 28 patients available at follow-up, 32%, 50% and 18% decreased, increased and maintained the same annual average factor consumption/kg, respectively. All patients had a good adherence after switch. In particular, the on demand patient started a regular prophylaxis with optimal compliance. ABR displayed a reduction with a median of 0 (range 0-5) after PK analysis compared to 1 (range 0-12) before the switch. Full PK vs popPK data obtained using at least two individual PK sampling points were almost similar.

Conclusions. Our results remark the necessity of PK study especially in children due to the inter-individual variability independent of genetic assessment. Regarding factor IX, PK allowed us to propose timing even longer than that recommended by prescribing indications resulting in a better personalized prophylaxis. Moreover, our study demonstrates that a full PK analysis is feasible also in children. However, given similar results, popPK could be more feasible in most patients. Regarding consumption, the reduction of only 32% of patients reflects our aim to maintain a high safety profile in an active pediatric population. Nevertheless, the mean annualized consumption was just 0.6-fold increased in the remaining patients. This approach led us to further reduce ABR and in some cases to obtain a persistent no-bleeding status even with a full active life.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution