Background: The PI3K pathway signals for cell proliferation and survival in many malignancies including multiple myeloma. Copanlisib (BAY 80-6946) is a pan-class I PI3K inhibitor with preferential activity of the alpha and delta isoforms, of which the alpha isoform has particular importance in multiple myeloma. Here we demonstrate the pharmacological activity of copanlisib in multiple myeloma as a single agent and in combination with carfilzomib biomarker exploratory evaluation using phosphorylation of the S6 ribosomal protein (p-S6).

Methods: 21 multiple myeloma cell lines were initially screened. Using an IC50 cut off of 100nM, 3 sensitive: NCI-H929, MM.1S, L-363 and 3 resistant: AMO-1, JJN3, COLO-677 were selected for further analysis. Apoptosis and cell senescence assays were done with each agent (copanlisib at 50nM and 100nM at 72 hours; carfilzomib at 2 nM and 20nM at 96 hours). Cell cycle analysis and induction of apoptosis were performed by FACS after propidium iodide or Annexin V FITC staining, respectively. Cellular senescencewas determined by measurement of β-galactosidase activity in cells treated for 96 hours. Combination studies utilized excess over highest single agent statistics (EOHSA) to evaluate potentiation. Reverse phase protein array (RPPA) was performed at baseline and post treatment for proteomics analysis with confirmatory western blot at 4 and 24 hours post treatment.

Results: Copanlisib induced apoptosis and cell cycle arrest in the sensitive cell lines, but not the resistant cell lines. The cell senescence assays confirmed apoptosis rather than cell senescence as the mechanism of inhibition of proliferation. Pretreatment RPPA analysis demonstrated lower p-S6 levels in the sensitive cells lines compared to the resistant cell lines. Further, treatment with copanlisib resulted in a greater decrease in p-S6 in the sensitive cell lines than in the resistant cell lines, which was validated by western blot. Downstream pathway effects were confirmed by an increase in PDCD4 in the sensitive cell lines. Treatment with copanlisib and carfilzomib showed potentiation by EOHSA statistics and further decrease in p-S6 expression in the sensitive rather than resistant cell lines.

Discussion: Copanlisib demonstrated single agent activity in human multiple myeloma cell lines, which is enhanced by the addition of carfilzomib. p-S6 levels may serve to select the most appropriate patient population to study combination of carfilzomib and copanlisib in relapsed/refractory multiple myeloma. With the choices of therapy available to patients with multiple myeloma there is a need for predictive biomarkers in order to better sequence therapies.

Disclosures

Larson:BMS: Consultancy. Slamon:Novartis: Consultancy, Honoraria, Research Funding; Biomarin: Consultancy, Honoraria; Pfizer: Honoraria, Research Funding; Eli Lilly: Consultancy; Syndax: Research Funding; Bayer: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution