Transferrin receptor 1(TfR1) is a type II transmembrane glycoprotein regulating the intracellular uptake of iron and is involved in cell growth, proliferation and survival. TfR1 is highly expressed on malignant cells, including those of hematologic malignancies. Therefore, TfR1 may be an attractive target for therapeutic monoclonal antibodies.

We generated a panel of fully-human, anti-TfR1 monoclonal antibodies and evaluated the anti-tumor effects of these antibodies both in vitro and in vivo. The results led to the selection of TSP-A74, an antibody with potent in vitro and in vivo anti-tumor activity, for further evaluation in several hematologic malignancy models. First, the efficacy of TSP-A74 was evaluated in acute myeloid leukemia (AML) models. Two AML cell lines, Kasumi-1 and HL-60, were subcutaneously inoculated in severe combined immunodeficiency (SCID) mice. After the tumors were grown to a size of 150 mm3, TSP-A74 was administrated intravenously (IV) once weekly for 4 weeks at doses of 0.4, 2 and 10 mg/kg and 1, 3 and 10 mg/kg for the Kasumi and HL60 xenograft models, respectively. TSP-A74 demonstrated complete tumor regression in these two xenograft models at 10 mg/kg and complete tumor growth suppression in the Kasumi model at 2 mg/kg. Even at the low dose of 1 mg/kg, TSP-A74 demonstrated tumor growth inhibition (TGI) of 60% in the HL60 model. Next, the anti-tumor efficacy of TSP-A74 was assessed in an acute lymphoblastic leukemia (ALL) model. The ALL cell line, CCRF-CEM, was engrafted into SCID mice intravenously. After 3 days, TSP-A74 was administrated IV at a dose of 10 mg/kg once weekly for 4 weeks. The control mice (n=10) rapidly developed leukemia and none survived at 42 days after leukemia cell engraftment. However, 7 of 10 (70%) mice treated with TSP-A74 survived to 179 days after engraftment when the study was terminated. Finally, the efficacy of TSP-A74 was evaluated in non-Hodgkin's lymphoma subcutaneous xenograft models. TSP-A74 produced complete regression of established tumors in the SU-DHL-2 (diffuse large B-cell lymphoma) xenograft model at a dose of 3 mg/kg and tumor growth inhibition of 100 % in the HH (cutaneous T cell lymphoma) xenograft model at a dose of 10 mg/kg. These results indicate that the human anti-TfR1 monoclonal antibody, TSP-A74, could be a new therapeutic candidate for hematologic malignancies.

Disclosures

Zhang:Perseus Proteomics Inc.: Employment. Nomura:Perseus Proteomics Inc.: Employment. Aikawa:Perseus Proteomics Inc.: Employment. Sudo:Perseus Proteomics Inc.: Employment. Morishita:Perseus Proteomics Inc.: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution