Haematopoietic stem cells (HSCs) are derived early from embryonic precursor cells, such as haemogenic endothelial cells and pre-HSCs. However, the identity of precursor cells remains elusive due to their rareness, transience, and inability to be isolated efficiently. Here we employed potent surface markers to capture the nascent pre-HSCs at 30% purity, as rigorously validated by single-cell-initiated serial transplantation assay. Then we applied single-cell RNA-Seq technique to analyse five populations closely related to HSC formation: endothelial cells, CD45- and CD45+ pre-HSCs in E11 aorta-gonad-mesonephros (AGM) region, and mature HSCs in E12 and E14 foetal liver. In comparison, the pre-HSCs showed unique features in transcriptional machinery, arterial signature, apoptosis, metabolism state, signalling pathway, transcription factor network, and lncRNA expression pattern. Among signalling pathways enriched in pre-HSCs, the mTOR activation was uncovered indispensable for the emergence of HSCs but not haematopoietic progenitors from endothelial cells in vivo. Transcriptome data-based functional analysis revealed de novo the remarkable heterogeneity in cell cycle status of pre-HSCs, with considerable proportion being actively proliferative. By comparing with proximal populations without HSC potential, the core molecular signature of pre-HSCs was identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating the step-wise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical application.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution