Splicing factor 3B1 (SF3B1) is a member of the U2 snRNP complex that is a key regulator of RNA splicing. RNA splicing begins with the recognition of splice sites (ss) at the 5' and 3' ends of introns and ends with the removal of introns and joining of exons flanking them. SF3B1 plays an important role in this process by facilitating the recognition of the 3'ss. SF3B1 is frequently mutated in numerous cancers as well as the myelodysplastic syndromes (MDS). Mutations within the HEAT domain of the protein potentially contribute to disease pathogenesis. In addition to influencing splicing by binding to pre-mRNA, SF3B1 has been shown to affect splicing of exons by associating with them directly on chromatin via histone/nucleosome interactions. However, it is not understood if or how SF3B1 association with chromatin is regulated. Given that N-terminal serine and threonine residues on SF3B1 are known substrates of cyclin E-Cdk2, which phosphorylates histone subunits and other chromatin associated proteins, we hypothesized that CDK2 activity regulates SF3B1-nucleosome interactions. Although SF3B1 is phosphorylated during splicing catalysis, the function of this phosphorylation has remained unknown. We have now discovered, using nucleosome preparations and histone subunit co-immunoprecipitation assays in synchronized cells, that endogenous SF3B1 interacts with nucleosomes in a highly cell-cycle dependent manner, while total cellular abundance of SF3B1 remains invariant during cell cycle progression. In human and mouse cells, including hematopoietic cell lines, SF3B1 is excluded from chromatin during both G0 (quiescence) and G2/M phases of cell cycle. Notably, SF3B1 is enriched within chromatin maximally during S-phase. Unexpectedly, we found that the inhibition of Cdc2 (Cdk1) during G2/M enforces the SF3B1-chromatin interaction, pointing to a direct role for Cdc2 in restraining this interaction during mitosis. Further, SF3B1 loading onto chromatin during early cell cycle progression from G0 to S-phase is inhibited by Cdk2 inhibition. Thus, Cdk2 and Cdc2 appear to have antagonistic roles in controlling SF3B1-chromatin interactions during the cell cycle. Our findings suggest that Cdk activity may regulate the recruitment of the spliceosome machinery in order to coordinate splicing of particular transcripts with cell cycle progression. Current studies are focusing on how disease-associated mutations in the HEAT domain of SF3B1 affect the dynamics of its cell cycle-dependent interaction with nucleosomes and corresponding alterations to splicing outcomes.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution