The processes of ex vivo transduction of T cells to express chimeric antigen receptors (CARs) and of CAR+ T cell expansion influence the phenotype, function and ultimate fate of the final CAR+T cell product infused into patients. CAR constructs, despite expression of endogenous activation signals, require exogenous T cell activation during CAR transduction to allow optimal lenti-viral or retroviral-mediated integration of the CAR gene of interest into T cells. Clinical CAR therapy trials utilize anti-CD3 antibody-mediated activation or combined CD3 and CD28 stimulation using CD3, CD28 specific magnetic beads. We introduce novel magnetic nanoparticle beads generated from iron oxide nanoparticles conjugated to streptavidin and bound to biotinylated T cell activating antibodies for the purpose of CAR transduction. The small size of these nanobeads confers the advantage of decreased steric hindrance and enhanced capability of bead surface antibodies to access T cell surface antigen for binding and stimulation. We achieve efficient CAR transduction using anti-CD3 nanobead-mediated T cell stimulation and demonstrate CD19 specific CAR-mediated cytotoxicity of CD19+ tumor using an annexin V and 7AAD cytotoxicity assay. Evaluation of T cell phenotype following anti-CD3 nanobead-mediated T cell activation demonstrates preferential activation of naïve T cells as compared to central and effector memory cells. Addition of anti-CD28 costimulation is not necessary to achieving or inhibiting this preferential naïve T cell activation. Naïve T cells exhibit greater replicative capacity and anti-tumor function as compared to both effector and central memory T cells for adoptive transfer. We anticipate that preferential generation of naïve T cell derived CAR+ T cells achieved by introducing anti-CD3 nanobead stimulation can further improve the outcomes of clinical trials using CAR therapy.

Disclosures

Fu:NVIGEN Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution