Macroautophagy is a catabolic process by which intracellular contents are delivered to lysosomes for degradation. ATG5 and ATG7 play an essential role in this process. Recent studies have shown that mouse hematopoietic stem cells (HSCs) lacking ATG7 were unable to survive in vivo, however, the role of macroautophagy in proliferation and survival of human HSCs has not yet been defined.

Here, we demonstrate that autophagy is functional in human hematopoietic stem/progenitor cells. Robust accumulation of the autophagy markers LC3 and p62 were observed in cord blood (CB)-derived CD34+ cells treated with bafilomycin-A1 (BAF) or hydroxychloroquine (HCQ), as defined by Western blotting. When these cells were subsequently differentiated towards the myeloid or erythroid lineage, a decreased accumulation of LC3 was observed. In addition, CB CD34+CD38- cells showed enhanced accumulation of cyto-ID (a marker for autophagic vesicles) compared to CD34+CD38+ progenitor cells upon BAF or HCQ treatment. In line with these results, also more mature CB CD33+ and CD14+ myeloid cells or CD71+CD235+ erythroid cells showed reduced levels of cyto-ID accumulation upon BAF or HCQ treatment. These findings indicate that human hematopoietic stem and progenitor cells (HSPCs) have a higher basal autophagy flux compared to more differentiated cells.

To study the functional consequences of autophagy in human HSCs and their progeny, ATG5 and ATG7 were downregulated in CB-derived CD34+ cells, using a lentiviral shRNA approach which resulted in 80% and 70% reduced expression, respectively. Downmodulation of ATG5 or ATG7 in CB CD34+ cells resulted in a significant reduction of erythroid progenitor frequencies, as assessed by colony forming cell (CFC) assays (shATG5 2.2 fold, p<0.05 or shATG7 1.4 fold p<0.05). Additionally, a strong reduction in expansion was observed when transduced cells were cultured under myeloid (shATG5 17.9 fold, p<0.05 or shATG7 12.3 fold, p<0.05) or erythroid permissive conditions (shATG5 6.7 fold, p<0.05 or shATG7 1.7 fold, p<0.05), whereby differentiation was not affected. The phenotype upon knockdown of ATG5 or ATG7 could not be reversed by culturing the cells on a MS5 stromal layer. In addition to progenitor cells, HSCs were also affected since long term culture-initiating cell (LTC-IC) assays in limiting dilution revealed a 3-fold reduction in stem cell frequency after ATG5 and ATG7 knockdown. The inhibitory effects of shATG5 and shATG7 in cultured CD34+ cells were at least in part due to a decline in the percentage of cells in S phase and (shATG5 1.4 fold, p<0.01 and shATG7 1.3 fold, p<0.01) and an increase of Annexin V positive cells. The changes in cell cycle and apoptosis coincided with a marked increase in expression of the cell cycle-dependent kinase inhibitor p21, an increase in p53 levels, and an increase in proapoptotic downstream target genes BAX, PUMA and PHLDA3. Additionally, ROS levels were increased after ATG5 and ATG7 knockdown. The increased apoptosis in shATG5 and shATG7 transduced cells might be triggered by elevated ROS levels.

Taken together, our data demonstrate that autophagy is an important survival mechanism for human HSCs and their progeny.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution