Deregulated c-MYC expression and mutations in p53 are among the most common changes detected in human cancer. It is now established that mutant p53 proteins confer a poor prognosis in human cancer through both loss of wild-type p53 activity as well as various proposed gain-of-function properties. The specific role of mutant p53 in MYC-driven tumorigenesis is not known. The Eμ-Myc mouse model carries a c-Myc transgene under the control of the immunoglobulin heavy chain gene enhancer (), recapitulating the chromosomal translocation underlying human Burkitt Lymphoma (BL). These mice develop aggressive pre-B or B cell lymphomas and ~20% of those tumours exhibit p53 mutations. We have shown that MYC-driven lymphomas are exquisitely dependent on the pro-survival BCL-2 family member MCL-1 such that loss of a single allele of Mcl-1 leads to dramatic tumour regression and prolonged animal survival. Interestingly, we found that this dependency on MCL-1 is reduced, but not completely ablated, by the presence of a p53 mutation. This suggests an important role for mutant p53 in the sustained survival of MYC-driven lymphomas. We are investigating the effects of five different mutant mouse p53 proteins (V170M, I192S, G280, R246Q, R270H) on tumour initiation, sustained growth and chemoresistance in the -Myc mouse model.

We are further examining the effect of p53 mutations on MCL-1 dependence by using a floxed Mcl-1 gene and a tamoxifen-inducible Cre-recombinase in established Eμ-Myc lymphomas. Preliminary data suggest that both loss of wild-type p53 function as well as retroviral over-expression of mutant p53 can compensate for reduced levels of MCL-1 (loss of one Mcl-1 allele). The underlying mechanisms for this are under investigation.

The role of mutant p53 in lymphoma cell survival has been further examined in Eμ-Myc lymphoma-derived cell lines. Enforced over-expression of mutant p53 in cell lines containing wild-type p53 impaired induction of apoptosis by Nutlin3A, an inhibitor of Mdm-2 (the major negative regulator of p53). Remarkably, Nutlin-3a-induced apoptosis was impaired although it caused substantial transcriptional induction of the p53 apoptosis effectors, Puma and Noxa. Importantly, different mutant p53 proteins conferred different levels of protection against cell death. The observed protection against cell death may be partly due to dominant-negative effects of mutant p53, however, it does not appear to be robust enough to account for the extent of cell survival. Furthermore, mutant p53 conferred resistance to docetaxol, which is thought to induce cell death through predominantly p53-independent mechanisms. These data suggest that mutant p53 can protect against both p53-dependent and p53-independent cell death processes. Conversely, transcriptional induction of Noxa and Puma implies that “p53-restoration therapy” may remain a feasible treatment strategy even in tumours that bear mutations in p53 and that the role of a dominant-negative effect for some mutant p53 proteins may be less important than previously considered, at least in lymphoma cells.

We are also examining the effect of mutant p53 on lymphoma development utilizing a hematopoietic reconstitution model and retroviral over-expression of mutant p53 proteins. The different mutant p53 proteins investigated exhibited distinct effects during tumorigenesis. The R246Q mutant p53 protein markedly accelerated lymphoma development in the context of MYC over-expression. The R246Q mutant p53 protein demonstrated strong selection in p53-deficient (p53-/-) hematopoietic cells during reconstitution indicative of an advantageous activity in emergency hematopoiesis.

Overall, these findings provide evidence for a positive oncogenic role of mutant p53 in hematopoietic cells that provides a particularly potent selective advantage in the context of MYC driven lymphoma development. Importantly, different p53 mutations exhibit different functional properties such that different p53 mutations are likely to be associated with distinct risk in human malignant disease.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution