Background

Leukemia is the most common malignant tumor in children under 15 years old. The main subtype of children leukemia is acute lymphoblastic leukemia (ALL), and B-lineage ALL (B-ALL) accounts for approximately 70%. The leukemia-initiating cells (LICs) are cancer stem cells with long-term repopulating potential and propagation ability, to maintain the leukemia cell phenotype, and possess leukemia-initiating activity. However, the regulation of LICs for the leukemia progression is poorly understood. The multifunctional scaffold proteins β-arrestins are proven to mediate H4 acetylation and gene expression. And β-arrestin2 is found to regulate the initiation and progression of chronic myeloid leukemia (CML). However, the role of β-arrestin1 in B-ALL is still unknown. Our preliminary data showed that both the high expression of β-arrestin1 and high proportion of CD34+CD38- cells are positively correlated with risk stratification and poor prognosis of childhood B-ALL. And β-arrestin1 binds with EZH2 to increase BCR/ABL H4 acetylation and thus promotes CML cell progression in vitro and in vivo. The aim of study is to investigate the essential function of β-arrestin1 in LICs from B-ALL.

Materials and Methods

The bone marrow (BM) and periphery blood (PB) of children B-ALL patients were collected, isolated and identified LICs by Magnetic-activated cell sorting (MACS) and flow cytometry. The total RNA and protein were purified for gene and protein expression by real-time RT-PCR and Western blot. The leukemia cells (LICs, Raji, and Reh) of β-arrestin1 depletion were constructed by transient or stable screening si-β-arrestin1 (siβ1) lentivirus vector. The serial cell colony formation and NSG mice survival analysis was measured the LICs self-renewal ability. The CCK8 and MTS assays were used to detect the cell proliferation, and annexin V-FITC and PI staining for cell apoptosis. The DNA methylation of gene promoter region was detected by methylation-specific PCR and the methltransferase activity by ELISA. The telomere length was indicated by Southern blot and FISH, and telomerase activity by TRAP. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay were applied to explain gene transcription. Student’s t test and Log-Rank test were used in the corresponding statistical significance and P<0.05 were considered significant. All the statistical analysis was performed using the GraphPad Prism (Version 5.0) software packages and SPSS 17.0.

Results

The expression of β-arrestin1 was elevated in LICs from B-ALL patients, and the high level of β-arrestin1 was negatively correlated with the survival of these patients. Further study showed that the loss of β-arrestin1 in B-ALL LICs attenuates their self-renewal capacity and promotes their senescence in vitro and in vivo. The mRNA expression level of β-arrestin1 is negatively correlated with that of PTEN in LICs. Moreover, the DNA methylation of the PTEN promoter region, the activity and the expression of DNMTs were enhanced in the LICs. The inhibition of DNMT1 activity impaired the self-renewal and increased the expression of PTEN of LICs. In addition, depletion of β-arrestin1 significantly decreased DNMT1 activity and PTEN methylation, and consistently increased PTEN expression in LICs. For B-ALL cell senescence, the mRNA expression level of β-arrestin1 is negatively related with the length of telomere, positively related with the activity of telomerase and the mRNA expression of hTERT in B-ALL LICs and engrafted NSG mice. Moreover, the weakened effect of β-arrestin1 on telomere, telomerase and the gene of hTERT were observed by injected the inhibitor of telomerase in leukemic mice. In addition, depletion of β-arrestin1 significantly decreased the binding of SP1 to the promoter of hTERT and thus reduced the transcription of hTERT in B-ALL Raji and Reh cells. Furthermore, β-arrestin1 interacted with P300 to bind with SP1 in the -104bp to -113bp of hTERT core promoter region in B-ALL cells.

Conclusions

β-arrestin1 could regulate the self-renewal and senescence of LICs from B-ALL, by partially mediating DNMT1 activity and hTERT transcription respectively, indicating that β-arrestin1 is a potential therapeutic target for B-ALL.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution