INTRODUCTION: Lenalidomide monotherapy exerts clinical activity in relapsed/refractory Diffuse Large B-cell Lymphoma (DLBCL) with better response rate and progression-free survival being recorded in activated B-cell-like (ABC) rather than germinal center B-cell-like (GCB)-DLBCL. Reasons for such a difference are likely due to different expression of key molecules involved in mediating activity of Lenalidomide, such as Interferon regulatory factor 4(IRF4) and cereblon (CRBN). Evidences supporting the key role of DNA methylation and histone modifications in regulating genome stability and gene expression in DLBCL prompted us to investigate the capacity of Azacytidine in modulating Lenalidomide activity, thereby sensitizing GCB-DLBCL to Lenalidomide and enhancing Lenalidomide efficacy in ABC-DLBCL.

METHODS: DLBCL cell lines with ABC (U-2932, RIVA) or GCB (SU-DHL4, SU-DHL6) genotype were used to investigate the effects of Lenalidomide and Azacytidine on cell growth and cell death. Western blotting (WB) and immunofluorescence analysis were used to assess modulating effects of the two-drug combination on molecular determinants of Lenalidomide activity. Additionally, we studied CRBN, IRF4 and CRBN binding proteins expression, such as Ikaros and Aiolos (IKZF1 and IKZF3) by real time polymerase chain reaction (RT-PCR) in response to drug treatment.

RESULTS: Graded concentrations of Lenalidomide (0.1-100 µM) inhibited cell proliferation by 20% to 40% and increased cell death up to 30% to 40% in ABC-DLBCL cell lines, whereas had minimal effects on GCB-DLBCL cell lines. Untreated ABC-DLBCL but not GCB-DLBCL consistently showed a high expression of CRBN and IRF4. Upon Lenalidomide treatment (3 days) CRBN was significantly upregulated and IRF4 downregulated in ABC-DLBCL, but not GCB-DLBCL cells. Since DNA methylation regulates gene expression in DLBCL cell lines, we next examined whether Azacytdine could modulate CRBN and IRF4 expression and in turn enhance responsiveness to Lenalidomide. Exposure of both ABC- and GCB-DLBCL cell lines to Azacytidine (up to 72 hours) induced a marked increase of CRBN and IRF4 transcripts; addition of Lenalidomide strongly increased Azacytidine-induced increase of CRBN and significantly downregulated IRF4 expression; the combined treatment induced a marked downregulation of Ikaros and Aiolos protein levels. At the cellular level, the concomitant Azacytidine (10 μM)/Lenalidomide (10 μM) treatment inhibited in a synergistic manner the mean (±SEM) cell growth of both ABC-DLBCL (Lena: -16 ± 4%; AZA: -22 ± 2%; AZA/Lena: -70 ± 1%, P<0.001) and GCB-DLBCL (Lena: -17 ± 3%; AZA: -40 ± 4%; AZA/Lena: -82 ± 2%, P<0.001). Additionally, the two drug exposure was associated with a 3-fold decrease of S phase cells(Lena: 28 ± 2%; AZA: 22 ± 0.8%; AZA/Lena: 9 ± 1%, P<0.001); a marked p21 overexpression, and a 3- to 4-fold cell death increase (P<0.001) in both ABC- and GCB-DLBCL.

CONCLUSIONS: Our results indicate that Azacytidine sensitizes GCB-DLBCL to the cytotoxic effects of Lenalidomide and enhances Lenalidomide efficacy against ABC-DLBCL resulting in synergistic anti-proliferative and pro-apoptotic effects in both ABC- and GCB-DLBCL cell lines. Cytotoxicity of the two drug combination is mediated by signaling events involving CRBN upregulation and IRF4 downregulation leading to CRBN-binding proteins downregulation. Azacytidine-dependent activation of CRBN and IRF4 expression allow to hypothesize a methylation-driven regulation of these genes. These results might provide a rationale for clinical studies using Azacytidine and Lenalidomide combination in ABC- and GCB-DLBCL.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

This icon denotes a clinically relevant abstract

Sign in via your Institution