Transcription activator-like effector nucleases (TALEN) are engineered proteins used for precise genome editing by generating specific DNA double strand that are repaired by homologous recombination and by non-homologous end joining. TALENs can be used to study gene regulation by deleting putative regulatory elements in the context of the native chromosome and measuring mRNA synthesis. We designed TALENs to delete individual DNAse I-hypersensitive sites (HS) of the β-globin locus control region (LCR) followed by an assessment of globin gene expression and assessment of epigenetic effects in K562 erythroleukemia cells. The β-globin LCR is composed of five HSs and functions as a powerful regulatory element responsible for appropriate levels of the five β-like globin genes during development. Introduction of plasmid DNA encoding a pair of TALENs and targeting individually the flanking region of the HS2, HS3 and HS4 core elements along with a donor 100 base single-stranded oligonucleotide resulted in the successful deletions of each of the three core elements in K562 cells. Individual K562 cells were seeded to produce clones and the mutations were screened by PCR to identify both heterozygous and homozygous clones.

The TALEN-mediated 288 bp HS2 core deletion resulted 32 heterozygous (48.5%) and 6 homozygous clones (9.1%) in a total of 66 clones screened. K562 carries three copies of chromosome 11 emphasizing the robustness of TALEN technology to target each of the alleles. In the 199 bp HS3 core deletion, from 113 clones we identified 28 heterozygous (24.8%) and 3 (2.7%) homozygous clones. Lastly, the 301 bp HS4 core deletion yielded 9 homozygous (5.9%) and 12 heterozygous (7.9%) clones from 151 clones screened. Total RNA was isolated from wild-type K562 cells, and from both the heterozygous and homozygous mutant clones and subjected to RNase Protection analysis to quantitate the levels of globin mRNA. Deletion if the HS3 core in K562 cells in a ∼30% reduction in ε-globin mRNA and 2-fold reduction in γ-globin mRNA. A more dramatic effect on globin expression is observed in the HS2 core deletion, as ε- and γ-globin expression is reduced by 2- and 5-fold, respectively. These results suggest that HS2 contributes the majority of the LCR enhancer function in K562 cells. The HS4 core deletion resulted in a modest ∼20% reduction in both ε- and γ-globin expression.

TALENs were designed to knockout trans-acting factors implicated to be involved in globin gene regulation and/or globin switching. TALENs bracketing the gene promoters and the first exon of 25 genes encoding either a transcription factor or histone-modifying enzyme were synthesized and post-transfection PCR screens of the transfected pool of K562 cells resulted in the successful identification of 17 gene knockouts. The 17 target genes are PRMT5, LDB1, EIF2AK3, BCL11A, HBSIL, MYB, SOX6, NFE4, NR2F2, NR2C1, NR2C2, CHTOP, NFE2, DNMT3A, RBBP4, MTA2 and MBD2. Single cell clones have been generated by limited dilution of transfected K562 pools and thus far we have identified heterozygous and homozygous clones of 8 of 17 gene knockouts, importantly all clones were identified without selection. The frequency of identifying the knockout clones, represented by the number of clones screened/ number of heterozygous clones/ number of homozygous clones, are as follows: HBS1L (63/3/0), SOX6 (68/13/2), NFE4 (56/13/7), LBD1 (300/2/0), MBD2 (301/0/1), CHTOP (288/66/6), NFE2 (712/44/5) and NR2C1 (96/40/11). The remaining nine gene knockouts and globin gene expression data will be presented at the meetings.

These studies highlight a powerful TALEN-mutagenesis platform for target deletions of both cis- and trans-elements to study globin gene switching. TALENs can be synthesized in several days and the screening of the individual clones for the desired knockouts is completed within two weeks. This highly efficient mutagenesis platform will further our understanding of the molecular basis of globin switching.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution