Iron deficiency and iron overload are common clinical conditions that impact on the health and wellbeing of up to 30% of the world’s population. Understanding mechanisms regulating iron homeostasis will provide improved strategies for treating these disorders. The liver-expressed proteins matriptase-2 (encoded by TMPRSS6), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis by regulating expression of the iron regulatory hormone hepcidin. Mutations in TMPRSS6 lead to iron refractory iron deficiency anemia, whereas mutations in HFE and TFR2 lead to the iron overload disorder hereditary hemochromatosis. To elucidate the competing roles of these hepcidin regulators, we created mice lacking matriptase-2, Hfe and Tfr2.

Tmprss6-/-/Hfe-/-/Tfr2-/- mice had iron deficiency anemia resulting from hepatic hepcidin over-expression and activation of Smad1/5/8, indicating that matriptase-2 predominates over Hfe and Tfr2 in hepcidin regulation. Surprisingly, this anemia was more severe than in the Tmprss6-/- mice, demonstrated by more extensive alopecia, lower hematocrit and significant extramedullary erythropoiesis in the spleen. There was increased expression of erythroid-specific genes in the spleens of Tmprss6-/-/Hfe-/-/Tfr2-/- mice, consistent with the extramedullary erythropoiesis. Expression of Tfr2 but not Hfe in the spleen was increased in the Tmprss6-/- mice compared to wild type and correlated with the expression of erythroid genes, suggesting that Tfr2 is expressed in erythroid cells. Further analysis of gene expression in the bone marrow suggests that the loss of Tfr2 in the erythroid cells of Tmprss6-/-/Hfe-/-/Tfr2-/- mice causes a delay in the differentiation process leading to a more severe phenotype.

In conclusion, our results indicate that Hfe and Tfr2 act upstream of matriptase-2 in hepcidin regulation or in a way that is overridden when matriptase-2 is deleted. These results indicate that inhibition of matriptase-2 would be useful in the treatment of iron overload conditions such as hereditary hemochromatosis. We have also identified a novel role for Tfr2 in erythroid differentiation that is separate from its canonical role as a regulator of iron homeostasis in the liver. This important role of Tfr2 in erythropoiesis only becomes apparent during conditions of iron restriction. Our results provide novel insights into mechanisms regulating and linking iron homeostasis and erythropoiesis.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution