Omacetaxine, an inhibitor of translation, was recently granted accelerated approval for the treatment of chronic myeloid leukemia (CML). Omacetaxine blocks translation elongation by competing with the incoming aminoacyl-tRNAs for binding to the A-site cleft in the peptidyl-transferase center. Our previous studies showed that by transiently inhibiting translation, omacetaxine reduced the expression of the key, short-lived oncoproteins Bcr/Abl and Mcl-1, leading to cell death in the CML cells. This action sensitized the cells to the Abl kinase inhibitor and killed the CML cells synergistically. Further, as omacetaxine acts in a different mechanism than the Abl kinase inhibitors, it overcame resistance to TKI that was associated with kinase domain mutations. These studies paved the foundation for the clinical development of omacetaxine in CML. We also demonstrated that omacetaxine was active in chronic lymphocytic leukemia by translational inhibition of Mcl-1 expression. In contrast to normal tissues, the fact that the leukemia cells are critically dependent on the oncogene activity for survival provided a biologic context for a positive therapeutic index. As the biological features of acute myeloid leukemia (AML) rely largely on the overexpressed oncoproteins or constitutively activated kinases, we hypothesized that omacetaxine would have therapeutic benefit in AML either alone or in mechanism based combinations.

To test this hypothesis, first, we compared omacetaxine to AC220, a potent FLT3 inhibitor, in AML cell lines OCI-AML3 and MV4-11. OCI-AML3 cells harbor the signature mutation of NPM1, whereas MV4-11 is a widely used model for the internal tandem duplications of FLT3 (FLT3-ITD), a common FLT3 mutation that constitutively activates the receptor tyrosine kinase. AC220 was selectively toxic to the MV4-11 cells, but had no effect on the viability of OCI-AML3. This is consistent with the biological context of MV4-11, but not OCI-AML3, that is addicted to the sustained activity of FLT3 for survival. In contrast, omacetaxine induced apoptosis in both cell lines with IC50s less than 100 nM. Protein synthesis was inhibited in both lines, measured by the incorporation of tritiated leucine. Apoptosis was induced rapidly within 24 h by omacetaxine, whereas AC220 required 72 h to kill the leukemia cells. These results indicated a common dependence on the continued protein synthesis in the AML lines, suggesting a potentially broad application of omacetaxine in AML patients with diverse genetic backgrounds. Over-expression of the anti-apoptotic protein Mcl-1 is associated with AML disease maintenance and resistant to therapy. Both Mcl-1 and FLT3 turn-over rapidly and are vulnerable targets of transient translation inhibition. Immunoblots showed that omacetaxine reduced the levels of both FLT3 and Mcl-1 in the MV4-11 cells. This activity augmented the effect of AC220 on FLT3 kinase, and induced synergistic apoptosis. Same synergistic combination was observed with omacetaxine and sunitinib, an inhibitor of FLT3, KIT and PDGF-R. Dose reduction index derived from these analyses showed that omacetaxine greatly potentiated the activity of both AC220 and sunitinib, resulting in profound apoptosis.

Both Bcl-2 and Mcl-1 are pro-survival proteins that regulate apoptosis by interacting with the BH3 motifs of their pro-apoptotic partners. BH3 mimetics, such as ABT-199, bind with high affinity to Bcl-2 and block this interaction, but not to Mcl-1. Resistance to BH3 mimetics in AML cells is associated with upregulation of Mcl-1. Since ABT-199 inhibits Bcl-2 but spares Mcl-1, and omacetaxine reduces Mcl-1 without affecting Bcl-2 expression, we hypothesized that their combination would target the two parallel arms of apoptosis control and kill the AML cells synergistically. Indeed, omacetaxine reduced Mcl-1 in the OCI-AML3 cells, leading to loss of mitochondrial membrane potential and apoptosis. ABT-199 blocked Bcl-2 function and also induced the intrinsic pathway of apoptosis. Their combination induced greater mitochondrial damage and apoptosis than either drug alone. The median effect analysis showed that they potentiate each other and exhibited strong synergy. Taken together, these results demonstrated that omacetaxine is active in AML cells alone and in mechanism based combinations. These actions provide rationale that warrants investigation in the clinic.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution