Abstract
Throughout life hematopoietic stem cells (HSCs) have to cope with various kinds of insults from inflammation to DNA damage constantly to maintain the integrity of stemness. It is possible that certain core factors are commonly implicated in the maintenance of HSC pool and function under discrete physiological and pathological conditions. However, the underlying mechanisms remain largely unexplored. Previous works have demonstrated that retinoic acid inducible gene I (Rig-I) plays an essential role in recognizing viral RNA and activating type I IFN transcription, but whether Rig-I is involved in the core program governing HSCs’ behaviors is unclear. Here, we report that in the steady status Rig-I deficiency significantly increased HSC number by dysregulating the cell-cycling status of HSCs in mice. However, HSCs in Rig-I-/- mice were actually more sensitive to genotoxic treatments such as irradiation as compared to wild type HSCs, causing more Rig-I-/- mice to die of hematopoietic exhaustion. In accordance, HSC transplantation assays showed a significant impact of Rig-I loss on the hematopoietic regeneration capacity. Mechanistically, we found that Rig-I represented a pivotal component of the molecular pathways that mediate DNA-damage response and the repair of DNA lesions. Taken together, these data indicate a crucial role of innate immunity-regulatory factor Rig-I in the maintenance of HSCs.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal