Abstract
Abstract 4089
The receptor CXCR4 and its ligand SDF-1 play major physiological roles especially on hematopoietic stem cells homing and retention. Many studies have implicated CXCR4 in the invasion by tumor cells of organs that produce SDF-1. In acute myeloid leukemia, the physiological role of CXCR4 is not fully understood. We used retrovirus to express MLL-ENL oncogene in CXCR4+/+ and CXCR4−/− hematopoietic primitive cells (Lin- isolated from fetal liver) and showed that CXCR4 is dispensable for generation of immortalized colonies in vitro. To determine CXCR4 function in vivo, CXCR4+/+ and CXCR4−/− transformed cells were transplanted into lethally irradiated mice. Whatever their phenotype, the recipient developed a myelo-monocytique leukemia characterized by their expression of Gr-1 and Mac-1. As expected, all recipients of MLL-ENL transduced CXCR4+/+ cells were moribund within 35 to 80 days post transplant (median survival time: 50 days). Strikingly, recipients of MLL-ENL transduced CXCR4−/− cells showed significantly increased lifespan, with a median survival time of 90 days. The cellularity of the peripheral blood of recipients of MLL-ENL transduced cells displayed considerable increases over time although this increase was much lower in CXCR4−/− than in CXCR4+/+ chimera. Bone marrow of MLL-ENL transduced CXCR4−/− chimera had moderately decreased numbers of mononuclear cells. There were important numbers of leukemic CD45.2+/Gr1+/Mac1+/c-kit+ cells in spleen from MLL-ENL CXCR4+/+ chimera which suggested that CXCR4 is important for leukemic progenitors cells retention in the bone marrow and especially in the spleen. The homing capacity of transduced CXCR4+/+ cells is comparable to the CXCR4−/− cells. Finally, more DNA damages were found in the BM cells of MLL-ENL CXCR4−/− chimera. All these results were confirmed by treating of MLL-ENL CXCR4+/+ chimera with CXCR4 inhibitor (TN140).
These results demonstrated that in absence of CXCR4, the cells transduced by oncogene MLL-ENL are capable of generating leukemia in the recipients. However, mice transplanted with MLL-ENL transduced CXCR4−/− FL cells developed acute myeloid leukemia with reduced aggressiveness and organ infiltration, which is associated with induced differentiation and DNA instability. These results indicated that the MLL-ENL progenitors are dependent on CXCR4 for their maintenance in the BM and spleen suggesting that CXCR4 inhibitors might have potential therapeutic applications.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal