Abstract 3919

Chronic lymphocytic leukemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC) dependent manner linking NOTCH2 to the activated state of the leukemic cells. The transcriptional activity of NOTCH2 is associated with the expression of CD23 and enhanced CLL cell viability. However, the regulation and possible functions of the individual NOTCH family members (NOTCH1–4) in CLL cells remain to be clarified.

We took advantage of targeting nuclear NOTCH2 using the recently identified NOTCH2 transactivation inhibitor gliotoxin (WO 2006/135949). We also analysed the regulation and possible function of NOTCH1–4 in PKC stimulated CLL cells using a PMA model (Hubmann et al., BJH 2010) and a microenvironment model where CLL lymphocytes were co-cultured with primary bone marrow stromal cells (BMSC) (Shehata et al., BLOOD 2010).

Electrophoretic mobility shift assays (EMSA) demonstrated that gliotoxin inhibited DNA-bound NOTCH2 complexes in PMA stimulated CLL cells in parallel to increasing the rate of apoptosis (mean±SD: 67±31% in gliotoxin treated cells versus 13±14% in the untreated controls, n=21). This was associated with downregulation of CD23A mRNA expression and CD23 surface expression (mean±SD: 42±32% versus 83±17%, n=21) as assessed by RT-PCR and FACS analysis. Exceptionally, one CLL case with a recently described NOTCH1 gain of function mutation appeared to be less sensitive to gliotoxin and had a persistent high expression of CD23.

We next tested whether NOTCH2 inhibition by gliotoxin is a selective process or indirectly mediated by effects on proteasome regulated apoptosis. Proteasome assays showed that gliotoxin had a minimal or no effect on the chymotrypsin like activity of the proteasome in CLL cells. In addition, the activity of the proteasome regulated transcription factor NFκB and the expression of its target genes like BCL2 and MCL1 were also not influenced by gliotoxin. These data point to the selectivity of targeting NOTCH2 signaling by gliotoxin rather than indirectly through the regulation of proteasome activity.

Short term (4 hours) exposure of CLL cells revealed that NOTCH1 was equally transcribed in unstimulated and in PMA activated CLL cells. NOTCH2 was upregulated in PMA activated CLL lymphocytes whereas NOTCH4 was only weakly detectable in unstimulated CLL cells. Gliotoxin treatment resulted in the downregulation of NOTCH1, NOTCH2 and NOTCH4 mRNA expression.

Interestingly, the inhibition of NOTCH2 activity by gliotoxin was associated with the concomitant induction of NOTCH3 signaling especially in the presence of PMA. This was indicated by the induced mRNA expression of NOTCH3 and its preferred target gene HEY1. Moreover, the induced transcription of HEY1 correlated with the upregulation of NR4A1, a key regulator of apoptosis in activated lymphocytes. These data may thus point to a pro-apoptotic role for NOTCH3/HEY1/NR4A1 signaling in CLL cells. The data also suggest that gliotoxin induced apoptosis is associated with differential regulation of the anti-apoptotic and pro-apoptotic arms of NOTCH signalling in CLL cells.

RT-PCR revealed that NOTCH1 and NOTCH2 are the main NOTCH family members which are expressed in CLL cells under co-culture conditions with BMSC and in freshly isolated CLL cells. Exposure to gliotoxin in co-culture selectively induced apoptosis in CLL cells and led to downregulation of NOTCH1 and NOTCH2 together with upregulation of NOTCH3 mRNA expression.

In summary, the data suggest that nuclear NOTCH2 activity might protect activated CLL cells from apoptosis by modulating the expression of NR4A1. The induced expression of NOTCH3 and its target gene HEY1 by gliotoxin reveals the complex role of different NOTCH family members in the regulation of apoptosis in CLL cells. Therefore, the individual NOTCH receptors may have opposite effects on CLL cell viability which should be considered in therapeutic approaches aimed to target NOTCH signaling in CLL.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution