Abstract 2210

Tissue factor pathway inhibitor (TFPI) is a key regulator of factor X (FX) activation in the extrinsic pathway of blood coagulation. TFPI inhibits FXa generation by formation of a quaternary complex consisting of factor VIIa (FVIIa), tissue factor (TF), FXa and TFPI. The main portion (∼80%) of TFPI in humans is reportedly associated with endothelial cells. We used human umbilical vein endothelial cells (HUVECs) as a model to obtain further insight into the function of TFPIα and the glycosylphosphatidylinositol (GPI) anchored TFPI form, which represents TFPIα bound to GPI-anchored surface proteins and/or TFPIβ. In contrast to TFPIα, which consists of 3 Kunitz domains (KD) and a basic C-terminal part, GPI-anchored TFPIβ lacks the third Kunitz domain (KD3) and the basic C–terminal region due to alternative splicing. In TFPIβ these two domains are replaced by a sequence that adds a GPI anchor to the protein linking it to the cell membrane.

Treatment of HUVECs with phosphatidylinositol phospholipase C (PI-PLC) that cleaves GPI-anchors and subsequent fluorescence activated cell sorting (FACS) on living cells showed that GPI-anchored TFPI represents about 70–80% of cell surface TFPI. Staining of TFPI on and in fixed and permeabilized cells (total TFPI) demonstrated that GPI-anchored cell surface TFPI contributes to ∼20% of total cellular TFPI. Enzyme-linked immunosorbent assay (ELISA) showed that PI-PLC treatment released a TFPI protein lacking the KD3 and basic C-terminus. These findings strongly suggest that TFPIβ is the predominant GPI-anchored form of TFPI on HUVECs. FX activation assays performed on the cell surface of PI-PLC treated living HUVECs showed the importance of GPI-anchored TFPI on extrinsic Xase complex activity. PI-PLC treatment resulted in increased FX activation. Although GPI-anchored TFPI displays ∼70–80% of cell surface TFPI, overall FXa generation was increased only by ∼50%. In conclusion, HUVEC surface TFPI is predominantly TFPIβ, and GPI-anchored TFPI is the main but not sole regulator of FX activation on the surface of HUVECs.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution