Abstract 482

Thrombocytopenia is a common side effect of high-dose chemotherapy that can compromise cancer treatment by requiring treatment delay and/or dose reduction for the patient. Platelet transfusion is typically given to prevent severe hemorrhage. However, several factors including acquisition, banking, and associated risks of bacterial infections and alloimmunization are hampering reliance on platelet transfusion. Growth factors are also used to stimulate proliferation and differentiation of megakaryocytes to increase platelet production, but in severely myelosuppressed patients these have only had modest benefit. The limitations of these two modalities for the treatment of chemotherapy-induced thrombocytopenia indicates that additional treatment approaches are needed. We have developed a novel approach to reconstitute megakaryocytes and platelets in thrombocytopenic patients which is presented here. We have identified a scalable culture system using serum-free medium and a defined cytokine cocktail free of animal products to expand CD34+ hematopoietic stem cells from G-CSF mobilized peripheral blood donors in vitro and direct their development to the megakaryocyte lineage to yield committed human megakaryocyte progenitors (MKPs). These MKPs can be readily cryopreserved while retaining their capacity to generate CFU-MK and platelets in vitro. When infused into NSG mice, ex vivo expanded MKP generate clinically relevant platelet levels of platelets in blood within a few days with sustained platelet levels for several weeks. The platelets generated from MKP in vivo are also functional as assessed by CD62P expression in responses to ADP stimulation in vitro. Our results present a compelling approach for the development of off-the-shelf storable MKPs for the treatment of thrombocytopenia.

Disclosures:

Karsunky:Cellerant Therapeutics Inc.: Employment, Patents & Royalties. Tressler:Cellerant Therapeutics, Inc.: Employment, Equity Ownership. Chananukul:Cellerant Therapeutics Inc.: Employment, Patents & Royalties.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution