Abstract 4808

Background:

It is now evident that hematopoietic stem cells (HSCs) reside preferentially at the endosteal region within the bone marrow (BM) where bone-lining osteoblasts are a key cellular component of the HSC niche that directly regulates HSC fate. We investigated the microenvironmental differences including osteoblastic activities and HSC components in myeloproliferative (chronic myeloid leukemia, CML) and hypogenerative disease (aplastic anemia, AA) as well as normal control (NC).

Methods:

The immunohistochemistry for osteonectin, osteocalcin, stromal cell derived factor (SDF, CXCL12), T cell, T helper/inducer cell, T suppressor/cytotoxic cell, hematopoietic stem/progenitor (CD34, CD117) and megakaryocytes was performed on BM biopsy specimens from 10 AA patients, 10 CML patients and 10 NC (lymphoma without BM involvement). The positive cells for immunohistochemical stainings except osteocalcin on each slide were calculated on 10 high power fields (HPF, ×400), and then corrected by the cellularity. The positive cells for osteocalcin were counted on the peritrabecular line on each slide, and then corrected by the mean length measured.

Results:

The CD34+ cells (p=0.012) and megakaryocytes (p<0.0001) were significantly lower in AA than in NC, but CD117+ cells was comparable in AA, CML, and control samples. The osteonectin+ cells (p=0.0003) were lower in CML than in AA and NC, however the osteocalcin+ cells showed wide variation (0-903/2035um) and no significant difference. The SDF+ cells (p<0.0001) was significantly higher in AA and very lower in CML, compared with NC. The counts for T cell and T cell subsets were significantly lower in CML than in NC, and higher in AA than in NC (p<0.0001).

Conclusions:

Cellular components of BM microenvironment in 2 hematologic diseases representative of myeloproliferation (CML) and hyporegeneration (AA) respectively are quite different. Further studies would be required to explore the role of these components for hematopoiesis and the rationale for therapeutic application.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution