Abstract 2394

Mesenchymal stromal (or stem-) cells (MSC) are culture-selected, heterogeneous supporting cells that can differentially regulate hematopoietic stem cell (HSC) behavior in vitro. The elusive identity of native MSC has obscured the contribution, if any, of these cells to HSC support in vivo. Having previously demonstrated that vascular pericytes (ubiquitous cells encircling endothelial cells in capillaries and microvessels) are ancestors of human MSC, we now hypothesize that pericytes are a critical component of the HSC “niche”. Consequently, pericyte isolation from total stroma would allow to develop co-culture systems for human HSC maintenance. In the present study, human cord blood CD34+ cells were cultured onto confluent human pericytes isolated from adipose tissue as CD146+CD34-CD45-CD56- cells. Co-culture of CD34+ cells on pericytes, for up to 6 weeks in the absence of any added growth factor, produced significantly i) higher numbers of CD45+ and CD34+ cells (p<0.05), ii) higher percentages of primitive CD34+CD33-CD10-CD19- progenitors (p<0.05), iii) higher percentages of single- and multi-lineage CFU (p<0.05) and iv) lower percentages of mature myeloid and lymphoid cells (p<0.05), compared to control co-cultures on unfractionated adipose stromal cells (ASC) (n=10 individual experiments, n=4 biological replicates). Most importantly, only pericytes could maintain HSC with self-renewal and long-term repopulating potential, as demonstrated by transplantation into primary and secondary NOD/SCID/IL2Rg−/− mouse recipients (n=3 individual experiments). In the latter setting, none of the mice receiving CD34+ cells co-cultured with ASC engrafted (n=10), whereas all recipients of CD34+ cells cultured in the presence of pericytes developed lympho-myeloid hematopoietic human cells (n=10). Altogether, these results support the hypothesis that pericytes maintain hematopoietic cell stemness. Conversely, unfractionated stromal cell cultures may promote HSC differentiation at the expense of self-renewal. Both tentative scenarios were explored. Co-cultures with pericytes in a transwell system revealed that cell-to-cell contact is required for HSC survival. Since Notch signaling regulates stem cell maintenance by inhibiting cell differentiation through cell-cell interactions, we hypothesized that pericytes purified from total stroma express specific Notch ligands. As shown by qPCR, the expression of Jagged-1 is 2 fold higher in pericytes compared to unfractionated ASC. Addition of a Notch inhibitor (DAPT) to pericyte/HSC co-cultures resulted in the significant reduction of CFU numbers (p<0.05) and increase in B-cell development. Furthermore, increased myeloid differentiation was observed when ASC conditioned medium was added to pericytes/HSC co-cultures. In conclusion, we demonstrate that vascular pericytes sustain HSC by promoting survival and preventing differentiation via cell-to-cell interactions involving Notch activation, whereas unfractionated stroma promotes HSC differentiation through a paracrine mechanism. We thus infer that HSC-supporting stromal cells are not confined within blood-forming organs (similar observations, not reported here, have been made on skeletal muscle pericytes). This novel concept is not easy to reconcile with normal hematopoiesis, but may be highly relevant in the context of the dissemination of malignant hematopoietic cells. Of important note, adipose tissue used in this study represents a convenient, safe and often abundant source of autologous therapeutic cells. Therefore, human fat-derived pericytes emerge as a candidate cell product for HSC ex vivo manipulation in the clinic.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution