Abstract 1974

Cytomegalovirus (CMV) is a major infectious complication in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) and has been linked to deficiencies of virus-specific T cell immunity. Compared to bone marrow or peripheral blood stem cell transplants, recipients of single or double umbilical cord blood transplants (UCBT) receive lower numbers of donor T cells that have not previously been primed to CMV and are at increased risk for early and recurrent CMV infections. At our institution, the rate of CMV reactivation in CMV seropositive patients undergoing CBT is close to 100% with standard dose Acyclovir as prophylaxis [Delaney unpublished data]. Here, we systematically analyzed the kinetics of recovery, durability, and specificity of CMV-specific CD8+ and CD4+ T cell responses in UCBT recipients. CD8 T cell responses to CMV were analyzed by interferon γ (IFN-γ) intracellular cytokine staining after stimulating recipient peripheral blood mononuclear cells (PBMC) obtained at various time points after CBT with autologous patient fibroblasts infected with the RV798 virus, which is a mutant CMV strain that lacks the viral US genes that downregulate class I MHC and can present all potentially immunogenic epitopes of the virus. The mean absolute CD8 T cell counts were 59, 93 and 213 cells/μl and the mean CD4 T cell counts were 154, 223 and 397 cells/μl in PBMC at day 56, 180 and 365 respectively. Direct assays of PBMC after a 4–6 hour stimulation with RV798-infected fibroblasts did not detect a significant frequency of IFN-γ+ CD8+ T cells in CBT recipients, in contrast to normal CMV+ donors that exhibited frequencies of CD8+ T cells of 2–10%. However, IFN-γ+ CMV specific CD8 T cells were readily detectable in PBMC obtained as early as day 42 after UCBT from 8 out of 8 CMV positive CBT recipients after a 10 day stimulation with RV798 infected fibroblasts. These responses were sustained at multiple time points through day 365 post transplant. This result was not a consequence of in vitro priming of CD8 T cells by prolonged stimulation with RV798 since we did not detect a CMV-specific T cell response in 3 out of 3 CMV seronegative recipients at any time through day 365 with the same assay. To assess CD4+ T cell responses, we performed lymphoproliferative assays (LPA) by stimulating patient PBMC obtained at the same time points with whole CMV antigen. The proportion of patients with a positive response at day 56, 80, 180 and 365 was 0.38, 0.50, 0.88, and 1.0 respectively. All of the CMV positive CBT recipients in our study had multiple occurrences of CMV reactivation throughout the first year post CBT requiring antiviral drug therapy.

The CMV-specific CD8 T cell response in normal CMV+ individuals recognizes a large number of distinct dominant and subdominant antigens and a potential explanation for the failure to control CMV after CBT is that the T cell response may not be sufficiently diverse. We analyzed the specificity of CMV specific CD8+ T cells that developed after CBT in 4 recipients by assessing recognition of COS cells transfected with the class I HLA restricting alleles and with a CMV plasmid library consisting of 142 ORFs, subdivided into pools. A response was seen in 3 out of 4 patients to at least 3 different CMV antigens by day 80 post CBT, including previously defined dominant epitopes in pp65 and this diversity was maintained through 6–12 months post transplant. One patient had a less diverse response early post CBT and the response changed over time to include recognition of new epitopes.

Collectively, our results demonstrate that CD8+ and CD4+ T cells are primed to CMV antigens very early after CBT despite the infusion of limited numbers of naïve T cells and the administration of post transplant immunosuppression. The inability to control CMV infection may be due to a quantitative deficiency of CMV-specific T cells resulting from the inability of CMV-specific T cells to expand in vivo to numbers sufficient to eliminate virus replication.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution