Abstract
Abstract 3236
Bcr-Abl is a leukemogenic fusion gene that by itself is sufficient for cellular transformation (Daley et al.) and is the hallmark of chronic myeloid leukemia and Philadelphia chromosome positive (Ph+) ALL. The Bcr-Abl fusion protein is a constitutively active tyrosine kinase (TK) which disrupts multiple cellular signalling pathways controlling apoptosis, cell cycle, proliferation and DNA repair. In Ph+ ALL, a subtype of ALL with a particularly poor prognosis, targeted inhibition of Bcr-Abl activity by Abl kinase inhibitors such as imatinib has improved treatment outcome but has not abrogated the frequent development of clinical resistance. In addition to mutations in the Bcr-Abl tyrosine kinase domain (TKD), it has become apparent that other resistance mechanisms contribute to disease progression. The activity of proteins involved in the above-mentioned signalling pathways and possibly resistance to TK inhibitors (TKI) is controlled at least partially by posttranslational modifications such as phosphorylation, which is regulated by the balance between kinases and protein tyrosine phosphatases (PTP). We previously showed that PTP1B is a negative regulator of Bcr-Abl-mediated transformation and modulates sensitivity to the TKI imatinib (Koyama et al). We hypothesized that other phosphatases for which Bcr-Abl is a substrate may also contribute to resistance, one candidate being Suppressor of T-cell receptor Signalling 1 (STS-1), which negatively regulates the endocytosis of receptor TK involved in a variety of hematologic malignancies.
It was the aim of this study to determine whether:
i) Bcr-Abl is a substrate of STS-1
ii) STS-1 is able to dephosphorylate Bcr-Abl
iii) expression of STS-1 reduces the proliferation of Bcr-Abl expressing cells by inhibiting Bcr-Abl kinase activity
iv) the level of STS-1 expression modulates the sensitivity of Bcr-Abl positive cells to TKI
In order to answer these questions, we used 293T cells, a human primary embryonal kidney cell line, and the IL3-dependent murine pro B cell line Ba/F3. Both cell lines were modified with constructs encoding both forms of Bcr-Abl (p185/p210) and Sts-1. For experiments with endogenous Bcr-Abl (p185) and Sts-1 we used Sup B15 cells, a human B cell precursor leukemia, and its TKI-resistant subline (Sup B15 RT), which was generated in our lab and is highly resistant not only to imatinib but also to 2nd generation TKIs (Nilotinib & Dasatinib), with no evidence of TKD mutations or transcriptional up-regulation of Bcr-Abl. In all above described cell lines the interaction between Bcr-Abl and Sts-1 could be shown in an overexpressed system (293T & Ba/F3) and on an endogenous level (Sup B15 & Sup B15 RT) by using co-IPs followed by SDS-PAGE and Western blotting. The functional relevance was examined by testing the ability of Sts-1 to dephosphorylate Bcr-Abl. Complete dephosphorylation of Bcr-Abl was shown for p185bcr-abl and p210bcr-abl in 293T cells. To verify that the functional activity was also present in hematopoietic cells, we analyzed the ability of Sts-1 to dephosphorylate Bcr-Abl in Ba/F3 and Sup B15 cells. Dephosphorylation was observed in both cell lines but was less pronounced than in 293T cells. We therefore more closely examined the most important tyrosine (Tyr) residues of Bcr-Abl and identified Tyr245 and Tyr412 as the major targets of Sts-1. Phosphorylation of Tyr245 and Tyr412 was decreased by ∼60% in Ba/F3 cells and ∼39% in Sup B15 cells. These two residues are known to be important for regulating cell proliferation, survival and cell motility. In a competitive proliferation assay in the absence of IL3, the proliferation rate of BA/F3 cells infected with Bcr-Abl and Sts – 1 was reduced compared to a Bcr-Abl infected control population. When treated with imatinib the Sts-1 expressing cells showed an approximately 5-fold reduced proliferation rate compared to cells lacking Sts-1, or to imatinib-resistant cells harbouring the Bcr-Abl “gatekeeper mutation” T315I. The expression level of Sts-1 was found to be approximately 3-fold lower in the Sup B15 RT compared to the WT cell line. Regulation appeared to occur at the transcriptional level as shown by quantitive RT-PCR. These results show that Bcr-Abl is a substrate of Sts-1, that this phosphatase modulates Bcr-Abl kinase activity and may abrogate the response to TKI. This suggests that phosphatases may contribute to the development of clinical resistance of Ph+ leukemias to TKIs.
Ottmann:Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal