Abstract 2619

Complex mechanisms regulate the ability of hematopoietic stem cells (HSCs) to self-renew, some of which may be exploited by leukemic stem cells. BMI1, a member of the polycomb group (PcG) proteins is known to be a positive regulator of this process, largely by repressing the p16/INK4a locus. However the role of other PcG proteins is unclear. We initially screened HSCs and progenitor populations from umbilical cord blood (CB), for the expression patterns of a number of PcG genes. Levels of expression were heterogeneous, indicating that there may be different roles for different PcG in HSCs versus progenitors. As a starting point we have focused on Mel18 (PCGF2) as it has been suggested in murine hematopoiesis that it acts to counteract BMI1. Lineage negative CB cells were transduced with lentiviral vectors expressing shRNA against Mel18, BMI1 and a control sequence. Specific knockdown by these constructs was confirmed at the RNA level to be at least 80% for both genes and was verified at the protein level by Western blot. Our data indicates that knockdown of Mel18 impairs the proliferation of primitive cord blood cells in both stromal-dependent and -independent culture, in a similar manner to BMI1. Furthermore Mel18 deficiency impedes both primary and secondary colony formation of all myeloid lineages in methylcellulose. These findings have been confirmed in vivo with significant reduction in engraftment of CB lineage negative cells in NOD/SCID mice at twelve weeks. We are investigating whether over expression of Mel18 can rescue BMI1 deficient cells to establish if these homologous genes have redundant functions. The data so far suggests that BMI1 is not unique in its role in HSC self - renewal, and Mel18 may share overlapping functions. This highlights a possible difference between human and murine hematopoiesis. Moreover it is likely that other members of the PcG family are also important in human HSCs. It will be of interest to investigate whether like BMI1, they are also implicated in the maintenance of the leukemic stem cell.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution