Abstract 4893

The initial treatment of multiple myeloma (MM) experienced a paradigm shift, in the past decade, with the introduction of novel agents such as thalidomide, lenalidomide and bortezomib, leading to improved outcomes. High dose therapy and autologous stem cell transplantation remains an important therapeutic option for patients with multiple myeloma eligible for the procedure. However, most of these treatment regimens are too expensive for Chinese patients. Therefore, we investigated the effects of artesunate, which is commonly used in the treatment of severe malaria, on inhibition of proliferation and induction of apoptosis of a mouse myeloma cell line SP2/0. The growth inhibition of SP2/0 cell proliferation induced by artesunate (ART) treatment was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the rate of apoptosis and cell cycle changes induced by ART were analyzed by flow cytometry. ART induced morphology changes of apoptosis in SP2/0 cells, as observed by light and transmission electron microscopy. Additionally, DNA laddering, which is a hallmark of apoptosis, was observed by agarose gel electrophoresis of DNA harvested from SP2/0 cells treated with ART. The levels of nuclear factor kappa B p65 (NFκB p65) protein in nucleus and the inhibitor of NFκB (IκBα) in the cytoplasm were measured by western blot analysis and ELISA to evaluate NFκB p65 transcription activity indirectly. The results show that artesunate inhibited the proliferation and induced apoptosis of SP2/0 cells in a dose- and time-dependent manner. Artesunate also increased the proportion of SP2/0 cells in G0/G1 phase, while decreased the proportion of cells in G2/M or S phase. Additionally, artesunate treatment decreased the level of NFκB p65 protein in the nucleus, while increased the level of IκBα protein in the cytoplasm. The present result is the first report to show that artesunate may be useful in the treatment of multiple myeloma.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution