Abstract 465

Immunotherapy may complement the current treatments for lymphomas. The lack of suitable shared lymphoma-associated antigens limits its applicability. Therefore, identification and utilization of novel and more potent tumor-associated antigens, particularly those shared among patients, are urgently needed to improve the efficacy of immunotherapy in the diseases. Recent studies have shown that Dickkopf-1 (DKK1), a secreted protein and Wnt signaling pathway inhibitor, is highly expressed by myeloma and other tumor cells, and is absent from normal tissues and organs except placenta and prostate. In the present study we demonstrated that DKK1 is also overexpressed in mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Using DKK1 peptide-pulsed dendritic cells (DCs), we successfully generated HLA-A*0201+ DKK1-specific CTL lines and clones in vitro. These CTLs effectively lysed DKK1+/HLA-A*0201+ lymphoma cell lines Jeko-1 and Granta 519 cells, but not DKK1-/HLA-A*0201+ BJAB, RL and Mino cells nor DKK1+/HLA-A*020- CA46 and Daudi cells. Furthermore, the T-cell clones efficiently killed DKK1+/HLA-A*0201+ primary B-cell lymphoma cells from patients but not lymphoma cells from DKK1/HLA-A*0201+ patients. HLA-ABC or HLA-A*0201 blocking mAbs significantly inhibited T cell-mediated cytotoxicity against peptide-pulsed T2 cells (P < .01, compared with medium control). No inhibitory effect was observed with mAb against HLA-DR and isotype control IgG. The results indicate that the cytotoxicity was attributed to MHC class I and more specifically, HLA-A*0201-restricted CD8+ CTLs. The CTLs did not kill DKK1/HLA-A*0201+ DCs, B cells, or PBMCs, These results suggest that the CTLs recognized DKK1 peptides that are naturally processed and presented in the context of HLA-A*0201 molecules on lymphoma cells. To determine the in vivo antitumor activity, NOD-SCID and SCID-hu mice were used for lymphoma cell lines and primary lymphoma cells, respectively. Mice were treated with DKK1-specific CTLs after tumor established in NOD-SCID and SCID-hu mice. Control mice were treated with naïve CD8+ T cells or PBS alone. Tumor burden was measured according to levels of circulating human B2M, and survival rates were determined. Low levels (< 50 ng/ml) of circulating human B2M were detected in group treated DKK1-specific CTLs, while high levels (≥ 150 ng/ml) of circulating human B2M were detected in control mice. In SCID-hu model, X-ray examination showed that established tumors were eradicated in 60% mice treated with DKK1-specific CTLs, while large tumor burdens were found in all control mice. In NOD-SCID model, 40% of mice survived with the treatment of DKK1-specific CTLs. TUNEL assay further confirmed that tumor cells were lysed by DKK1-specific CTLs not naïve CD8+ T cells. These results indicate that DKK1-specific CTLs are able to eradicate established, patient-derived primary B- cell lymphoma in the hosts and adoptive transfer of DKK1-specific CTLs may be used for B-cell lymphoma therapy.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution