Abstract 396

Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution