Abstract 3648

Poster Board III-584

GATA1 is a transcription factor essential for the differentiation of erythroid cells and megakaryocytes. Since GATA1 regulates genes related to the survival, proliferation and differentiation of hematopoietic cells, regulation of the Gata1 gene expression is critically important for the understanding of hematopoiesis. The Gata1 locus contains multiple untranslated first exons plus five common coding exons. Of these first exons, erythroid first exon (IE exon) is important for the Gata1 gene expression in the hematopoietic lineages. However, due to the embryonic lethality of this IE exon knockdown mice, less is understood about the contribution of the IE exon to adult hematopoiesis. Here, we achieved specific deletion of the IE exon in adulthood by crossing the IE-floxed mice with the interferon-inducible Mx1-Cre transgenic mice. This conditional IE-deletion mouse (ΔIE mouse) showed severe thrombocytopenia with increased premature megakaryocytes similarly to the phenotypes reported in the conditional Gata1 knockout mice in which the entire Gata1 gene was deleted in adulthood. In addition, the ΔIE mice showed severe anemia with skewed erythroid maturation, and importantly this erythroid phenotypes substantially differed from those observed in the conditional Gata1 knockout mice. Further analyses revealed that the Gata1 mRNA level in the megakaryocytic lineage was significantly downregulated. By contrast, in the erythroid lineage, Gata1 mRNA was retained at a comparable level to that in control mice utilizing two alternative first exons; one was the IEb/c, which was previously reported as a first exon rarely used in hematopoietic cells, and the other was newly identified IEd exon located within the second intron. Surprisingly, in the ΔIE mice these transcripts failed to produce full-length GATA1 protein, but instead inefficiently yielded GATA1 lacking the N-terminal 83 amino acids. This form of GATA1 is often observed in Down syndrome-associated transient myeloproliferative disorder and acute megakaryoblastic leukemia. Of note, the transcript derived from exon IEb/c preserved the first translation initiation codon in exon 2 but lost the potential to select the first translation initiation codon or failed to produce full-length GATA1. The present study demonstrates that the IE exon is instrumental to adult erythropoiesis by regulating the proper level of transcription and by selecting the correct translation start site for production of adequate full-length GATA1 protein.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution