Abstract
Abstract 2800
Poster Board II-776
Bone marrow (BM) angiogenesis is implicated in Multiple Myeloma (MM) progression. In this study, we tested the hypothesis that MM progression occurs when aberrant BM perivascular niches are established. We isolated BM endothelial cells derived from MM patients (MM-BMECs) from BM aspirates using anti-CD31Ab coupled to magnetic beads. FACS analysis showed that of all the cell lines isolated were endothelial: more than 95% expressed Ulex Europaeus Agglutinin-1 and Factor VIII and were negative for monocyte-macrophage (CD14) and plasma cell markers (CD38). To test the hypothesis that in MM patients BM perivascular niches are aberrant we analyzed how MM-BMECs modulate hematopoietic stem cells (HSCs) properties using a BM microvascular endothelial cell line isolated from a healthy donor (BMECs) as control. We co-cultured cord blood cells CD34+ HSCs in the presence of MM-BMECs or BMECs feeder layer and we analyzed the ability of MM-BMECs compared with BMECs to modulate HSCs adhesion, chemotaxis and apoptosis. The results show that MM-BMECs promote CD34+ HSCs adhesion, recruitment and protect them from apoptosis. In detail, we showed that after 24h of co-culture there was a significant increase in the number of adherent HSCs on MM-BMECs than on BMECs: 43±9% versus 25±6%. Moreover, when HSCs were cultured for 48 hours in 1% of serum in the presence of MM-BMECs they were less sensitive to apoptosis (9±11% of Annexin V+ cells) than HSCs cultured in the presence of BMECs (14±1% of Annexin V+ cells) or without a feeder layer, as control (17±3% of Annexin V+ cells). For the migration assay a transwell chamber system, in which the upper and the lower chambers were separated by 5-μm pore-size filter, was used. BMECs, MM-BMECs or nothing was plated in the lower chamber, while HSCs were seeded into the upper chamber. Both chambers were loaded with unsupplemented EBM-2 plus 2% of serum. Cell migration was studied over a 6-8 hours period and evaluated as number of cells migrated into the lower chamber. The results showed a significantly greater migration of HSCs in the presence of MM-BMECs than BMECs: 12±2% versus 5±1% of migrated cells. Taken together, these data showed that MM-BMECs promoted HSCs migration, adhesion and survival. Next we evaluated how MM-BMECs modulate the hemopoiesis recovery after irradiation in a NOD-SCID mouse model. When injected into sub-lethally irradiated (3 Grey) NOD-SCID mice MM-BMECs were detected in the BM integrated within the murine BM vessels and promoted hematopoietic recovery. In detail, MM-BMECs provided signals favoring the commitment towards lymphoid lineage. In fact, 7 days after injection, the BM of mice injected with MM-BMECs showed an increase in the percentage of lymphoblast (2.7%), compared with mice injected with BMECs or PBS, as control (respectively, 1.5% and 1.4%); followed, 14 days after injection, by a significant increase in the percentage of peripheral blood lymphocytes in mice injected with MM-BMECs (75±6%) versus mice injected with BMECS and PBS (respectively 60±0.5% and 47±7%). Since MM is a plasma cells disorder and the Notch-Delta pathway has been shown to play a central role in regulating HSCs properties, including the decisions of HSCs to undergo T- or B-cell differentiation, we investigated the involvement of this pathway in MM-BMECs and HSCs interaction. As determined by FACS and RT-PCR analysis, MM-BMECs, compared to BMECs, over expressed Delta-like Notch ligand 4 (DII4). Thus, we investigated the role of DII4 in the MM-BMECs/BMECs-HSCs adhesion. The first results showed that the expression of DII4 by MM-BMECs is necessary to promote HSCs adhesion. In fact, using a blocking antibody against DII4 (AbαDII4) at 50ug/ml there was an impairment in HSCs adhesion to MM-BMECs (43±9% versus 24±2% of adherent cells without and with AbαDII4 treatment), but not on BMECs (25±6% versus 26±1.4% of adherent cells without and with AbαDII4 treatment). Ongoing experiments are focusing on the role of DII4 in the modulation of HSCs proliferation, protection against apoptosis and in vitro-in vivo B commitment by MM-BMECs. Taken together, all these data suggest that BMECs in MM may function as “aberrant perivascular niches”, modulating HSCs properties. This aberrant phenotype could be due to an alteration of the Notch-Delta pathway in BMECs that favors malignant clonal growth by protecting it from apoptosis, favoring migration, adhesion and providing self-renewing and/or proliferative cues.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal