Abstract 2529

Poster Board II-506

A Proto-oncogene FUS (fusion derived from malignant liposarcoma), also known as TLS (translocated in liposarcoma), was originally identified in chromosomal translocation of human soft tissue sarcoma. FUS is also known to be fused with an ETS family transcription factor ERG in human myeloid leukemia with t(16;21) which is associated with poor prognosis. Based on its protein structure, DNA- and RNA-binding activity and involvement in many human cancers as the fusion with various transcription factors, FUS is now grouped with EWS and TAFII68 into TET (FET) oncogene family. Multiple functions have been postulated for FUS, including non-coding-RNA-mediated transcriptional repression, posttranscriptional RNA processing and the maintenance of genomic integrity. Fus-deficient (Fus−/−) mice showed a non-cell-autonomous defect in B lymphocyte development, defective B cell activation and increased sensitivity to radiation in previous studies. However, its physiological function in hematopoiesis remains unknown. In this study we performed detailed analyses of Fus−/− hematopoietic stem cells (HSCs). Fus−/− fetal livers at embryonic day 14.5 exhibited a mild reduction in numbers of hematopoietic stem and progenitor cells compared with the wild type. Disruption of Fus, however, did not grossly affect proliferation or differentiation of hematopoietic progenitors. Of note, Fus−/− HSCs had significantly reduced repopulating activity of hematopoiesis in competitive repopulation assays, and did not repopulate hematopoiesis at all in tertiary recipients. Moreover, Fus−/− HSCs were highly sensitive to radiation both in vitro and in vivo and showed a drastic reduction in numbers in recipient mice after sublethal irradiation. All these findings implicate Fus in the maintenance and radioprotection of HSCs. Studies of chromosome stability, telomere length, apoptosis and levels of reactive oxigen species (ROS) appeared not accountable for the apparent defect of Fus−/− HSCs. However, gene expression profiling identified changes in expression of several genes in Fus−/− HSCs, and dysregulated expression of some of these genes might be responsible for the defective function of Fus−/− HSCs.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution