Abstract 2382

Poster Board II-359

Although recent advances in treatment-strategies for chronic lymphocytic leukemia (CLL) have resulted in increased remission rates and response duration, the disease eventually relapses, which necessitates repeated cycles of therapy. Eventually most patients develop chemo-resistant disease which infers a very poor prognosis. The activity of purine-analogs and alkylating agents, the backbone of current treatment regimens, depends on functional p53 and chemo-resistance is highly associated with a dysfunctional p53-response.

P53-independent sensitization of CLL cells to these compounds could represent a novel strategy to overcome chemo-resistance. Platinum-based compounds have been successfully applied in relapsed lymphoma and recently also in high-risk CLL. In various cancer-types, the activity of such compounds has been found to be p53-independent and in part mediated by p73. In this study we investigated the efficacy and mechanism of action of platinum-based compounds in chemo-refractory CLL.

Neither cisplatinum nor oxaliplatin as a single agent induced cell death in clinically relevant doses. However, independent of p53-functional status, platinum-based compounds acted synergistically with fludarabine, which was found to be caspase-dependent. Combination-treatment resulted in strong upregulation of the pro-apoptotic BH3-only protein Noxa. We did not find evidence for a role of p73; however, the observed synergy was found to involve generation of reactive oxygen species (ROS). Co-treatment with ROS-scavengers completely abrogated Noxa-upregulation and cell-death upon combination treatment in p53-dysfunctional CLL. Noxa RNA-interference markedly decreased sensitivity to combination treatment, supporting a key role for Noxa as mediator between ROS signaling and apoptosis induction.

In addition to these findings, we tested the effects of platinum-based compounds and fludarabine on drug-resistance resulting from CD40-ligand stimulation of CLL cells, which represents a model for CLL cells in the protective micro-environment of the secondary lymph node-tissue (Hallaert et al Blood 2008 112(13):5141). Combination treatment could overcome CD40-ligand induced chemo-resistance and was, at least in part, mediated by the generation of ROS and marked induction of expression of Noxa.

Our data indicate that interference with the cellular redox-balance represents an interesting target to overcome drug resistance due to both p53-dysfunction as well as micro-environmental protective stimuli in CLL.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution