Abstract 2095

Poster Board II-72

The biologic half life (T12) of low molecular weight heparin (LMWH) is usually measured in terms of the circulating anti-Xa levels. Enoxaparin represents an unique LMWH whose biologic T12 is relatively longer than most LMWHs. Moreover, it is known that the antithrombotic effects of this agent last longer in comparison to the measurable circulating anti-Xa levels. Therefore besides the anti-Xa activity, additional non-measurable biologic effects are contributory to the clinical effects of this agent. Plasma based thrombin generation assays have recently become available to assess the effects of LMWHs such as enoxaparin. In these assays blood plasma samples are activated using different activators and the generated thrombin inhibition is measured. To measure the time course of thrombin generation inhibitory activity after an IV bolus dose of 0.5 mg/kg of enoxaparin into groups of primates (n=6-8), a commercially available thrombin generation method was employed (Technoclone, Vienna, Austria/DiaPharma, West Chester,OH). Blood samples were drawn from each of the primates injected at varying time points for up to 28 hours. A thromboplastin/phospholipids based reagent was used to generate thrombin and the results were recorded in terms of nm of thrombin formed. The baseline values ranged from 500-900 nm (710±60 nm), although a complete inhibition of thrombin generation was noted at 1 hour (24±8 nm), a slow and gradual reduction in the thrombin generation inhibition was noted with a T12 of 9 hours. Even at 28 hours after the administration of enoxaparin, sustained inhibition of thrombin generation was noted (30-50%). Interestingly, the circulating anti-Xa and anti-IIa activity gradually diminished to an almost non-detectable level at 6 hours. These studies suggest that enoxaparin produces antithrombotic actions by multiple mechanisms. Furthermore thrombin generation methods in plasma samples may provide a more sensitive assay for the monitoring of the effect of LMWH.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution