B-cell development and differentiation are complex processes controlled by distinct programs of transcriptional control. A large set of transcriptional factors together or in succession control this process and their deregulation may result in block of differentiation or malignant transformation. MicroRNAs are small RNAs that orchestrate cellular functions by modulating the level of their targeted proteins by either translational arrest or transcript degradation, and play a key role in cell differentiation, apoptosis, proliferation and cancer development. An increasing number of transcription factors are being found targeted by microRNAs. Emerging evidence suggests that differentiation stage-specific expression of microRNAs occurs in the hematopoietic system and during T cell differentiation. Only limited information exists on microRNA expression in normal B cell differentiation and its malignant counterparts. Herein we analyzed microRNA expression profiles in distinct peripheral B cell differentiation stages-naïve, germinal center (GC) centroblasts and memory cells as well as tonsilar T cells. Furthermore, microRNA profiling was performed in germinal center-like (GCB-like) and activated B-cell-like (ABC-like) DLBCL cell lines originating from distinct B-cell differentiation stages. RNA, extracted with mirVana kit (AMBION) from B cell subsets and T cells enriched from normal tonsils was hybridized on LC Sciences (Houston, TX) microarrays harboring 470 human microRNAs probes (Sanger miRBase Release 9.1). Expression of selected microRNAs was confirmed by ABI RT-PCR methodology. Unsupervised clustering of microRNAs with values present in at least 50% of the samples (122 probes) resulted in perfect differentiation-stage clustering of samples. Application of Statistical Analysis of Microarrays (SAM) and Prediction Analysis of Microarrays (PAM) methods (FDR= 10%) identified a 47 microRNA cell of origin classifier for B-cells differentiation stage; 27 of these microRNAs were upregulated and 20 downregulated in centroblasts compared to memory B-cells. MicroRNAs belonging to paralog microRNA clusters (e.g. miR17-92-1, miR363-106a and miR25-106b) demonstrated similar patterns of expression in specific differentiation stages. To identify specific microRNA targets, miRanda, TargetScan and PicTar programs were used. To experimentally confirm the targets, we assessed the effects of specific microRNAs on the expression levels of targeted proteins and on the luciferase reporter under the control of the wild type and mutated 3′ UTR regions of putative target genes. Using this experimental approach we identified lymphocyte-stage-specific microRNAs which expression inversely correlated and might regulate the expression of LMO2, BLIMP1 and IRF4 proteins distinctively expressed at different differentiation stages of B lymphocytes. For example, miR223, which expression is low in GC cells but is high in naïve and memory B cells, downregulates the expression of LMO2. We next analyzed microRNA expression in DLBCL cell lines. Clustering analysis, using the 47 microRNA cell of origin classifier perfectly classified GCB-like and ABC-like cell lines. Interestingly, the expression of microRNAs in both GCB-like and ABC-like DLBCL cell lines was more similar to normal centroblasts than to memory B cells, suggesting that both may originate from distinct subpopulations of GC lymphocytes. The similarity of microRNA expression in cell lines to centroblasts was striking, with only 16 microRNAs (1 upregulated and 15 downregulated in cell lines) showing noticeable differences in levels of expression compared to normal cells. These microRNAs might be involved in the process of lymphoma transformation. SAM analysis aimed to differentiate GCB-like and ABC-like cell lines identified 11 microRNAs, only 3 of which were present in the cell of origin classifier. This observation suggests that there is also a difference in expression of microRNAs not directly related to the distinct cell of origin between the DLBCL subtypes. In summary, our results demonstrate that the microRNA profile changes during the GC reaction as well as during malignant transformation. Specific microRNAs can regulate key transcription factors controlling the processes of lymphocyte differentiation and transformation.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution