A recombinant human CHO-expressed von Willebrand factor (rVWF) which consists of ultra-high molecular weight (UHMW) multimers resembles the VWF that is stored in Weibel-Palade bodies of endothelial cells. Once secreted into plasma, UHMW multimers are rapidly cleaved by ADAMTS13 and therefore are usually missing in VWF purified from plasma. We analyzed in vitro whether the cleavage of rVWF by ADAMTS13 is similar to the cleavage of plasma VWF by ADAMTS13, using a standard assay that depends on denaturing conditions (1.5 M urea) to expose the ADAMTS13 cleavage site of VWF. We explored the kinetics of ADAMTS13-mediated proteolysis of rVWF over time by exposing 1 VWF:Ag IU/ml of rVWF to various concentrations of recombinant and plasma-derived purified ADAMTS13, ranging from 4 mU/ml to 1 U/ml (corresponding to 0.4 to 100% of the normal human plasma concentration), and to ADAMTS13 present in normal human plasma and VWF-deficient plasma. The multimeric structure and function of VWF were analyzed by multiple assays to compare VWF before, during, and after proteolytic cleavage. In addition, the degradation kinetics of recombinant VWF were compared with those of a plasma-derived VWF product. Recombinant VWF was cleaved rapidly and with the same efficiency using recombinant or plasma-derived ADAMTS13. With 0.5 U/ml pADAMTS13 or rADAMTS13, VWF:RCo activity was below the detection limit of 0.17 IU/ml after 15 s. UHMW multimers disappeared within seconds at physiological concentrations of 0.5–1.0 U/ml ADAMTS13 (50–100% of the normal plasma concentration). Furthermore, UHMW were cleaved within 30 minutes with much lower concentrations of 10–30 mU/ml ADAMTS13 (1–3% of normal plasma concentration). The typical satellite bands appeared very early in an ADAMTS13 dose-dependent manner. Although plasma-derived VWF differs substantially from rVWF in its multimeric structure, the decrease in activity was similar for the recombinant and plasma-derived VWF. Specific cleavage of rVWF (3 IU VWF:Ag/ml) by rADAMTS13 (5 U/ml) was also demonstrated without urea under shear stress in the presence of platelets, detected by a monoclonal antibody (N10) that recognizes VWF only when cleaved by ADAMTS13. The combined data show that ADAMTS13 is able to readily cleave human rVWF even at low concentrations and that the UHMW multimeric fraction of human rVWF is removed within minutes by ADAMTS13 in vitro.

Disclosures: Rottensteiner:Baxter: Employment. Varadi:Baxter: Employment. Vejda:Baxter: Employment. Schreiner:Baxter: Employment. Gritsch:Baxter: Employment. Turecek:Baxter: Employment. Ehrlich:Baxter : Employment. Schwarz:Baxter: Employment.

Author notes

Corresponding author

Sign in via your Institution