Multiple Myeloma (MM) is a fatal malignancy characterised by the accumulation and expansion of antibody producing plasma cells in the bone marrow. Evidence is increasing that nuclear factor kappa B (NFκB) is a promising target for new anti-myeloma therapies. In this study, we assessed the in vitro activity of V1810, a novel NFκB inhibitor. V1810 potently induces cell death in all tested MM cell lines (OPM-2, U266, NCI-H929, RPMI-8226) with an IC50 ranging between 5μM to 10μM as well as in primary MM cells from patients. Cell death induced by V1810 clearly shows biological features of apoptosis such as DNA fragmentation and caspase 3 cleavage. In OPM2, U266 and RPMI-8226 cells induction of apoptosis is accompanied by cell cycle arrest. Western blots revealed downregulation of cyclin D1 (U266) or cyclin D2 (OPM2, NCI-H929, RPMI-8226) respectively, but not cyclin D3. Consistent with the downregulation of cyclin D1/2, retinoblastoma protein was found to be hypophosphorylated. Considering that cyclin D1 and D2 are known to be NFκB target genes, this is in line with our finding that V1810 inhibits baseline NFκB activity in MM cells (36% relative reduction). Importantly, V1810 also abrogates NFκB activation induced by genotoxic drugs like melphalan and doxorubicin. Accordingly, V1810 and melphalan synergistically decrease MM cell viability. Taken together, V1810 induces apoptosis and cell cycle arrest in MM cells by inhibition of NFκB and overcomes NFκB mediated drug resistance to melphalan. The maximum tolerable dose (MTD) of V1810 in BalbC mice was 10mg/kg i.v. and plasma concentrations of 9.5μM are achievable in NRMI mice after 5mg/kg V1810 i.v., which corresponds well to the used in vitro concentrations. This study strongly supports the further development of NFkB inhibitors in MM, especially in combination with genotoxic drugs.

Disclosures: Leban:4SC: Employment. Schmidmaier:4SC: Research Funding.

Author notes

Corresponding author

Sign in via your Institution