A recent preclinical study suggested that imatinib may be cardiotoxic in some patients. We reviewed all reported serious adverse events of cardiac adverse events occurring in patients on clinical trials involving imatinib. Among 1276 patients enrolled, 22 (1.7%) were identified as having symptoms that could be attributed to systolic heart failure. The median age was 70 years (range, 49 to 83 years). The median time from start of imatinib therapy was 162 days (range, 2-2045 days). At the time these events were reported, 8 (0.6%) were considered possibly or probably related to imatinib. A total of 18 patients had previous medical conditions predisposing to cardiac failure: congestive heart failure (CHF; 6 [27%] patients), diabetes mellitus (6 [27%] patients), hypertension (10 [45%] patients), coronary artery disease (CAD; 8 [36%] patients), arrhythmia (3 [14%] patients), and cardiomyopathy (1 [5%] patient). Of the 22 patients, 11 continued imatinib therapy with dose adjustments and management for the CHF symptoms without further complications. Imatinib therapy as a causal factor of CHF is uncommon, mainly seen in elderly patients with preexisting cardiac conditions. Patients with previous cardiac history should be monitored closely and treated aggressively with standard medical therapy, including diuretics, if they develop symptoms suggestive of heart failure.

Imatinib is a selective inhibitor of the Abl, platelet-derived growth factor receptor (PDGFR), and stem cell receptor (c-Kit) tyrosine kinases.1  Imatinib has revolutionized the treatment of chronic myeloid leukemia (CML) and other diseases such as Philadelphia chromosome (Ph)–positive acute lymphoblastic leukemia (ALL), hypereosinophilic syndrome (HES), and gastrointestinal stromal tumors (GISTs).2–6  In CML, more than 80% of patients achieve a complete cytogenetic remission with imatinib. After 60 months, a projected 89% of patients are alive and 83% are alive and event-free.7  In Ph+ ALL, the addition of imatinib to standard chemotherapy has led to a significant improvement in remission duration and overall survival in both newly diagnosed and refractory patients.5,6 Other potential therapeutic benefits of imatinib have been suggested, such as decreased pulmonary pressure in patients with pulmonary hypertension8  and lower cholesterol.9 

Overall, imatinib is well tolerated. The commonly reported adverse events are nausea, diarrhea, muscle cramps, skin rash, and fluid retention.10  Recently, a preclinical study by Kerkelä and colleagues11  suggested that imatinib may be cardiotoxic in animal models. Cardiac muscle biopsies of mice treated with 200 mg/kg of imatinib revealed stress-induced mitochondrial changes such as mitochondrial biogenesis, increased numbers of mitochondria, and pleomorphic mitochondria. The investigators studied the mechanisms of these events and suggested it might be related to inhibition of Abl. Cardiomyocytes transduced with the imatinib-resistant c-abl with a T315I mutation were protected from the imatinib-induced cell death.11  In addition, 10 patients who had developed congestive heart failure (CHF) and had been exposed to imatinib at some point were summarized. The report, however, did not assess the frequency of this adverse event or the potential risk factors associated with it. To evaluate the incidence and significance of CHF in patients treated with imatinib, we analyzed our experience in patients treated with imatinib.

The medical records of all patients with hematologic malignancy (including ALL, acute myeloid leukemia, CML in any phase of the disease, or myeloproliferative disorders such as polycythemia vera, hypereosinophilic syndrome, systemic mastocytosis, and chronic myelomonocytic leukemia) who received imatinib on clinical trials at the M. D. Anderson Cancer Center from July 28, 1998, to July 27, 2006, were reviewed. Institutional review board (IRB) approval was granted by the M. D. Anderson Cancer Center, and informed consent was obtained in accordance with the Declaration of Helsinki. In addition, all recorded and reported serious adverse events in these patients were reviewed, with particular attention to those considered to have some potential cardiac origin. These included shortness of breath, dyspnea, chest pain, arrhythmia, cardiac events, myocardial infarction, angina, pleural effusion, and peripheral edema. In these trials, patients received imatinib alone or in combination with chemotherapy or other investigational agents (ie, tipifarnib, lonafarnib, decitabine, or homoharringtonine). In these trials, patients were seen at our institution every 1 to 3 months for the first year and every 3 to 6 months after that. Patients were asked to keep a diary documenting intake of their medication as well as any adverse events they may have encountered. Between visits to our institution, patients followed up with their local physicians, and the research personnel followed the patients by telephone for compliance and adverse events. All adverse events that were unexpected (ie, not listed in the investigator's brochure) or serious (ie, resulting in death, life-threatening adverse experiences, hospitalization, persistent disability, or congenital abnormality or birth defect) were required to be reported to the IRB. All other adverse events were not reported to the IRB, but had to be submitted as part of the annual review and final report of each protocol. The prior history of patients was reviewed with particular attention to conditions considered to constitute a cardiac risk factor. Similarly, the patients' medications before the start of imatinib or at the time treatment was started were recorded. All clinical notes, consultation notes, concomitant medications, laboratory tests, radiologic and other imaging tests, and any cardiac work-up performed on these patients around the time of the adverse event were reviewed. The Framingham criteria were applied to patients with symptoms or signs of systolic heart failure.12  Patients with a documented low cardiac ejection fraction were also considered to have CHF, even in the absence of symptoms.

A total of 1276 patients were enrolled on imatinib clinical trials and included in this analysis. The median follow up from the time imatinib was started was 47 months (range, 1 to 86 months). The median age for all patients was 52 years (range, 15 to 84 years); 536 were women. The imatinib dose at time of enrollment was less than 400 mg in 18 patients, 400 mg in 519 patients, 500 mg in 7 patients, 600 mg in 460 patients, 800 mg in 265 patients, and 1000 mg in 6 patients. A total of 22 patients were identified as having CHF during the course of imatinib therapy. The median age for the 22 patients was 70 years (range, 49 to 83 years), and 10 were women (Table 1). Their diagnosis at the time of imatinib initiation was: CML in chronic phase (CP) in 11 patients (out of 561 patients treated in CP; 1.96%), accelerated phase (AP) in 4 patients (out of 384 patients treated in AP; 1.04%), blastic phase (BP) in 2 patients (of 123 patients; 1.62%); myeloproliferative disorder in 4 patients (of 124 patients treated; 3.2%); and Ph+ ALL in 1 patient (of 74 patients treated; 1.35%). Also reviewed were 10 patients with c-kit+ AML who received imatinib, but none developed CHF.

Table 1

Characteristics of the 22 patients with CHF

No. (%) or median (range)
Age, y (range) 70 (49-83) 
Male/female 12/10 
Diagnosis  
    CML 11 (50) 
    CML AP 4 (18) 
    MPD 4 (18) 
    CML BP 2 (9) 
    ALL 1 (5) 
Medical history  
    Hypertension 10 
    CAD 8 (36) 
    CHF 6 (27) 
    DM 6 (27) 
    Arrythmia 3 (14) 
    Cardiomyopathy 1 (5) 
Prior IFN-α 12 (55) 
Prior anthracyclin 3 (13) 
Decreased LVEF 9 (41) 
Dose at the time of CHF  
    300 mg 1 (5) 
    400 mg 8 (36) 
    600 mg 8 (36) 
    800 mg 5 (23) 
Albumin, g/L 33 (17-49) 
No. (%) or median (range)
Age, y (range) 70 (49-83) 
Male/female 12/10 
Diagnosis  
    CML 11 (50) 
    CML AP 4 (18) 
    MPD 4 (18) 
    CML BP 2 (9) 
    ALL 1 (5) 
Medical history  
    Hypertension 10 
    CAD 8 (36) 
    CHF 6 (27) 
    DM 6 (27) 
    Arrythmia 3 (14) 
    Cardiomyopathy 1 (5) 
Prior IFN-α 12 (55) 
Prior anthracyclin 3 (13) 
Decreased LVEF 9 (41) 
Dose at the time of CHF  
    300 mg 1 (5) 
    400 mg 8 (36) 
    600 mg 8 (36) 
    800 mg 5 (23) 
Albumin, g/L 33 (17-49) 

CML AP indicates CML–accelerated phase; CML BP, CML–blastic phase; MPD, myeloproliferative disorders; and CAD, coronary artery disease.

The incidence of new onset CHF increased with increasing age. None of the patients who were younger than 45 years developed symptoms of CHF. The incidence was 0.3% (1 in 322 patients) among patients aged 45 to 55 years, 1.7% (5 in 291 patients) among those aged 56 to 65 years, 2.8% (6 in 211 patients) for patients aged 66 to 75 years, and 9.3% (4 of 43 patients) for those aged 76 to 85 years. There was no correlation between dose and incidence of CHF. There were 5 (2%) instances of CHF of the 271 patients treated with a starting dose of 800 mg or higher, compared with 8 (2%) of 467 treated at a dose of 500 to 600 mg daily, 8 (2%) of 519 receiving 400 mg daily, and 1 (6%) of 18 treated with 300 mg daily.

Of the 22 patients with CHF, 12 (55%) patients had received prior interferon-α (IFN-α) therapy for a median of 14 months (range, 2-79 months), and 3 patients had received anthracyclines (Table 2). Of the 3 patients who received anthracyclines, 2 developed CHF while on anthracycline therapy (1 patient after third cycle of HyperCVAD [total doxorubicin dose of 100 mg/m2]; the second shortly after receiving the first cycle of idarubicin [12 mg/m2], cytarabine, and imatinib). The third patient had received doxorubicin 15 years before developing CHF. A total of 18 (82%) of the 22 patients had previous cardiac conditions or other medical conditions that could be considered as risk factors for cardiac disease: prior history of CHF (6 [27%]patients), diabetes mellitus (DM; 6 [27%] patients), hypertension (10 [45%] patients), coronary artery disease (CAD; 8 [36%] patients), arrhythmia (3 [14%] patients), and cardiomyopathy (1 [5%] patient). The median time from start of imatinib therapy to a cardiac adverse event was 162 days (range, 2-2045 days), and the daily dose of imatinib at the time of CHF was 300 mg in 1 patient, 400 mg in 8 patients, 600 mg in 8 patients, and 800 mg in 5 patients. Thus, 9 (1.6%) of 537 patients who received therapy with 400 mg/day imatinib or less developed CHF, compared with 13 (1.7%) of 738 treated at higher doses (P = .99).

Table 2

Patient characteristics

DiagnosisAge, ySexIFN, moMedical historyImatinib, dStarting dose, mg/dImatinib after eventCommentsEcho/MUGA, %M
BeforeAfter
CML 66 15 NIDDM, HTN 893 400 Discontinued due to progression Iron overload NA NA 
CML 75 CHF, IDDM, MI 801 400 Discontinued due to progression — NA MUGA, 26 
CML 73 MI 695 400 Continued, same dose CHF after pacemaker placement NA 40 
CML 50 2* CHF, IDDM 283 400 Continued, same dose — NA 25-30 
CML 83 HTN, CAD 1525 800 Continued, same dose — NA NA 
CML 68 HTN, MI, CAD 171 600 Discontinued for CHF — 45-50 25-30 
CML AP 76 — 414 600 Continued, dose reduced to 400 mg daily Found to have afib; CHF resolved with correction of afib NA MUGA, 76 
CML AP 55 HTN, MI 98 600 Continued, dose reduced to 400 mg daily Admitted with CP; thallium revealed reversible ischemia NA 55 
CML AP 65 19 CHF, NIDDM, HTN, CAD, Arr 153 600 Death from sepsis — NA 65-70 
PV 74 CHF, HTN 32 400 Discontinued for CHF — NA NA 
SMD 75 — 293 300 Continued same dose  NA NA 
ET 61 12 — 225 800 Discontinued for CHF Concomitant use of anagrelide NA 30-35 
MF 77 NIDDM 67 400 Discontinued for CHF Hemglobin 83 g/L at event 65 NA 
CML 57 NIDDM, HTN, Arr 298 800 Continued, dose reduced to 600 mg daily Admitted with DOE had hemoglobin 60 g/L; resolved with correction of anemia NA NA 
CML 73 Arr 135 800 Continued, dose reduced to 400 mg — 65 Normal (outside) 
CML 58 76 — 1397 600 Discontinued for CHF VTach, ECHO showed 35% EF; CC not done because patient had progressive disease NA 20 
CML BP 63 79 CHF 35 600 Discontinued for CHF Bilateral pneumonia with EF 40%; diagnosed with hypothyroidism, recovered with synthroid 50-59 39 
CML 57 HTN 87 400 Continued same dose Chest pain; CC revealed CAD with 16% EF; CAD thought not to explain cardiomyopathy NA 16 
CML 57 24 CAD 2045 800 Continued, dose reduced to 400 mg daily — NA 60-65 
CML AP 70 48 CHF 600 Death — NA NA 
ALL 75 HTN 43 400 Continued same dose Later died from sepsis NA 50 
CML BP 81 HTN, CAD 1317 600 Progression CAD; disease progressing at the time of CHF with increasing dose from 200 to 600 mg/d; prior anthracyclines NA 25 
DiagnosisAge, ySexIFN, moMedical historyImatinib, dStarting dose, mg/dImatinib after eventCommentsEcho/MUGA, %M
BeforeAfter
CML 66 15 NIDDM, HTN 893 400 Discontinued due to progression Iron overload NA NA 
CML 75 CHF, IDDM, MI 801 400 Discontinued due to progression — NA MUGA, 26 
CML 73 MI 695 400 Continued, same dose CHF after pacemaker placement NA 40 
CML 50 2* CHF, IDDM 283 400 Continued, same dose — NA 25-30 
CML 83 HTN, CAD 1525 800 Continued, same dose — NA NA 
CML 68 HTN, MI, CAD 171 600 Discontinued for CHF — 45-50 25-30 
CML AP 76 — 414 600 Continued, dose reduced to 400 mg daily Found to have afib; CHF resolved with correction of afib NA MUGA, 76 
CML AP 55 HTN, MI 98 600 Continued, dose reduced to 400 mg daily Admitted with CP; thallium revealed reversible ischemia NA 55 
CML AP 65 19 CHF, NIDDM, HTN, CAD, Arr 153 600 Death from sepsis — NA 65-70 
PV 74 CHF, HTN 32 400 Discontinued for CHF — NA NA 
SMD 75 — 293 300 Continued same dose  NA NA 
ET 61 12 — 225 800 Discontinued for CHF Concomitant use of anagrelide NA 30-35 
MF 77 NIDDM 67 400 Discontinued for CHF Hemglobin 83 g/L at event 65 NA 
CML 57 NIDDM, HTN, Arr 298 800 Continued, dose reduced to 600 mg daily Admitted with DOE had hemoglobin 60 g/L; resolved with correction of anemia NA NA 
CML 73 Arr 135 800 Continued, dose reduced to 400 mg — 65 Normal (outside) 
CML 58 76 — 1397 600 Discontinued for CHF VTach, ECHO showed 35% EF; CC not done because patient had progressive disease NA 20 
CML BP 63 79 CHF 35 600 Discontinued for CHF Bilateral pneumonia with EF 40%; diagnosed with hypothyroidism, recovered with synthroid 50-59 39 
CML 57 HTN 87 400 Continued same dose Chest pain; CC revealed CAD with 16% EF; CAD thought not to explain cardiomyopathy NA 16 
CML 57 24 CAD 2045 800 Continued, dose reduced to 400 mg daily — NA 60-65 
CML AP 70 48 CHF 600 Death — NA NA 
ALL 75 HTN 43 400 Continued same dose Later died from sepsis NA 50 
CML BP 81 HTN, CAD 1317 600 Progression CAD; disease progressing at the time of CHF with increasing dose from 200 to 600 mg/d; prior anthracyclines NA 25 

PV indicates polycythemia vera; ET, essential thrombocytosis; Mast, mastocytosis; HTN, hypertension; NIDDM, noninsulin diabetes mellitus; IDDM, insulin-dependent diabetes mellitus; Arr, arrthymia, afib, atrial fibrillation; EF, ejection fraction; CP, chest pain; CC, cardiac catheterization; and DOE, dyspnea on exertion; NA, not applicable; —, not available.

*

Just prior to event.

At the time CHF was identified, 8 of the cases were considered possibly or probably related to imatinib. A total of 15 patients had an echocardiogram or multiple gated acquisition (MUGA) scan at the time of the event, and 9 of the 15 had documented low left ventricular ejection fractions (LVEFs; < 50%). In only 2 of these 9 patients was there an echocardiogram done prior to imatinib (LVEF 45-50% and 50-59%, respectively). Of the 9 patients with low ejection fractions at the time of the event, 7 had one or more prior cardiac conditions (4 had CAD, 2 had CHF, and 1 had cardiomyopathy) or hypertension (3 patients). Of the other 2 patients, 1 was on anagrelide prior to the event, and the other had progressive disease with blast crisis and ultimately died 13 months later (no further cardiac follow-up). Half (11) of the 22 patients continued imatinib therapy with dose adjustments and management of CHF symptoms without further complications. Of the 11 patients who continued therapy, 5 had imatinib dose reductions, and 6 continued at the same imatinib dose. In addition to dose modifications, diuretics, beta blockers, and angiotensin-converting enzyme inhibitors were added to the treatment regimen. Of the 11 patients who discontinued therapy, 3 had disease progression, 6 patients discontinued therapy because of CHF, and 2 died while on therapy (1 from neutropenic sepsis; and 1 with progressive disease with ascites, lower limb edema, and dyspnea prior to imatinib initiation; this patient received imatinib for 2 days but continued with deterioration of his general condition and died on the third day). No postmortem analysis was done on these 2 patients.

We also reviewed all deaths on the study. A total of 18 patients died while receiving imatinib (including the 2 patients previously mentioned). Of those, the cause of death was disease progression in 10 patients, sepsis in 3 patients, unknown causes in 3 patients, central nervous system hemorrhage in 1 patient, and CHF in 1 patient (previously mentioned).

Conflicting animal and in vitro data regarding the cardiac effects of imatinib have been published.11,13,14  In 1 study, imatinib was found to be cardioprotective in hypertensive rats. In this model, homozygous TGR (mRen2) 27 rats were used. These animals develop hypertension and left ventricular (LV) dysfunction secondary to persistently increased angiotensin levels. Angiotensin also activates PDGFR, leading to activation of extracellular signal–related kinase (ERK) 1/2 signaling, which in turn leads to LV dysfunction and cardiac collagen accumulation. The investigators demonstrated a cardioprotective effect of imatinib possibly mediated through inhibition of PDGFR both in animals and in cell cultures.14 

The second study suggested a cardiotoxic effect of imatinib through inhibition of c-abl, leading to activation of the endoplasmic reticulum stress response. This ultimately activates jun amino terminal kinases (JNKs). JNK has several targets, 1 of which is BCL2-associated X protein (Bax). Activated Bax causes collapse of the mitochondrial potential, release of cytochrome c, and cell death.11  This study suggested that imatinib is cardiotoxic, and that its use can lead to severe left ventricular dysfunction and heart failure. The conclusion was based on the cell culture and animal studies, as well as a collection of 10 patients identified as having CHF while receiving imatinib. Of those 10 patients, 5 are included in this analysis (3 with CML, 1 with essential thrombocytosis, and 1 with ALL). The other 5 were either not enrolled on clinical trials, did not have leukemia, or were not treated at our institution.

In this analysis, we evaluated the incidence of CHF among patients receiving imatinib on clinical trials. After a median follow-up time of 47 months, we identified 22 (1.7%) patients who met the Framingham criteria for CHF. Patients who developed CHF were older than those who did not have this complication (median age, 70 years vs 52 years; P = .001). The incidence of CHF increased with increasing age: none of the youngest patients developed CHF; 9% of patients aged 75 years had CHF. This is similar to the reported incidence of CHF in the general population, where the 5-year risk of developing CHF increases with age. In the Framingham study, the 5-year risk of CHF for men was 0.8%, 1.3%, 4%, and 8.3% for patients at the index ages of 40, 50, 60, 70, and 80 years, respectively. For women, the 5-year risk of CHF was 0.1%, 0.1%, 0.7%, 2.2%, and 7.8%, respectively (Table 3).15 

Table 3

Incidence of CHF in patients receiving imatinib compared with the Framingham heart study

CHF in patients receiving imatinib
Framingham heart study15 
Age group, yNo.New-onset CHF, No. (%)Age, y5-year risk of CHF, %
MenWomen
Younger than 45 409 0 (0) 40 0.2 0.1 
45-55 322 1 (0.3) 50 0.8 0.1 
56-65 291 5 (1.7) 60 1.3 0.7 
66-75 211 6 (2.8) 70 2.2 
76-85 43 4 (9.3) 80 8.3 7.8 
CHF in patients receiving imatinib
Framingham heart study15 
Age group, yNo.New-onset CHF, No. (%)Age, y5-year risk of CHF, %
MenWomen
Younger than 45 409 0 (0) 40 0.2 0.1 
45-55 322 1 (0.3) 50 0.8 0.1 
56-65 291 5 (1.7) 60 1.3 0.7 
66-75 211 6 (2.8) 70 2.2 
76-85 43 4 (9.3) 80 8.3 7.8 

DM, hypertension, coronary artery disease, arrhythmia, and history of CHF (all well known heart failure risk factors)16–18  were present in 18 of the 22 patients. In addition, 13 (59%) patients had previously received 1 or more known cardiotoxic drugs19–21  (IFN-α in 12 patients, anthracyclines in 3 patients, and anagrelide in 1 patient). CHF could have been precipitated or exacerbated by imatinib-associated fluid retention in these patients with a possibly already compromised heart function. Fluid retention is a known side effect of imatinib reported in previous studies, with grades 3 and 4 incidence ranging from 1.4% to 8% (Table 4). This complication decreased with longer follow-up with fluid retention (all grades) occurring in 20.2% and 5.6% of patients at 2 and 4 years, respectively, in the IRIS study.28 

Table 4

Incidence of grade 3 or 4 edema and fluid retention in imatinib studies

NMedian follow-up, moDose, mgNo. patients (%)M
Superficial edemaFluid retention (other)
CML22  532 18 400 5 (1) 3 (0.6) 
CMLBP23  260 400/600 9 (5) 8 (6) 
CMLAP24  235 10 400/600 6 (4) 7 (3) 
GM25  33 15 500/1000 2 (6) 1 (3) 
ALL relapse26  56 NA 400/600 1 (2) 1 (2) 
GIST3  147 10 400/600 — 2 (1.4) 
Melanoma27  26 NA 800 — 2 (8) 
ALL6  80 13 600 — 2 (3) 
ALL5  20 20 400 — 1 (5) 
NMedian follow-up, moDose, mgNo. patients (%)M
Superficial edemaFluid retention (other)
CML22  532 18 400 5 (1) 3 (0.6) 
CMLBP23  260 400/600 9 (5) 8 (6) 
CMLAP24  235 10 400/600 6 (4) 7 (3) 
GM25  33 15 500/1000 2 (6) 1 (3) 
ALL relapse26  56 NA 400/600 1 (2) 1 (2) 
GIST3  147 10 400/600 — 2 (1.4) 
Melanoma27  26 NA 800 — 2 (8) 
ALL6  80 13 600 — 2 (3) 
ALL5  20 20 400 — 1 (5) 

GM indicates glioblastoma multiforme; ALL, acute lymphoblastic leukemia; GIST, gastrointestinal stromal tumor; —, not applicable.

Fluid retention events include pleural effusion, ascites, pulmonary edema, pericardial effusion, anasarca, aggravated edema, and fluid retention not otherwise specified

In response to the original observation by Kerkelä et al, several letters were published, including a preliminary analysis of our own experience, all of them suggesting a very low incidence of reported CHF.29–32  In the Novartis clinical database, which includes 2327 patients with an average exposure of 2.5 years, 12 cases of CHF were considered to be possibly or probably related to imatinib. With 5595 years of exposure, the calculated incidence was 0.2% per year.29  The Italian cooperative study group on CML reviewed their experience with imatinib in 4 consecutive studies and found 3 confirmed cardiac deaths in 833 patients. All 3 patients died of myocardial infarction with no history of left ventricular dysfunction.30 

It is possible that this analysis underestimates the incidence of cardiotoxicity, considering the retrospective nature of the analysis, and that it included only patients on clinical trials with documented reported adverse events, usually grade 3 or 4 toxicities. However, patients in these studies were rigorously monitored and followed prospectively, and all adverse events were reviewed and reported, with multiple layers of quality control. It is also possible that subclinical cardiotoxicity might have been overlooked, as patients were not routinely followed with cardiac evaluation (eg, by echocardiogram or brain natriuretic peptide). However, we believe that such clinically insignificant variations in cardiac function, and even the more clinically relevant ones, are outweighed by the extraordinary benefit derived with imatinib in these patients with leukemia. One important issue to consider is the potential interaction with other medications, whether prescription, over the counter, or chemotherapy/biological agents that patients may be using while on imatinib. Because of the nature of this analysis, we can only address the concomitant chemotherapeutic or biologic agents administered to those patients. A total of 16 patients received single-agent imatinib, while 6 received imatinib in combination with other chemotherapeutic or biologic agents (3 with interferon and cytarabine, 1 with decitabine, 1 with idarubicin and cytarabine, and 1 with the HyperCVAD regimen).

We conclude that CHF is very uncommon in patients receiving imatinib. It appears to occur at rates similar to those expected in the general population. Fluid retention should be managed adequately, and symptoms suggestive of systolic heart failure should be properly investigated and managed when they occur. At the present time, there is no indication for routine cardiac monitoring of all patients treated with imatinib. Certainly, patients with significant cardiac history should be followed closely, and those with symptoms suggestive of a possible cardiac condition be properly and opportunely evaluated.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Contribution: E.A. designed and research, analyzed data, and wrote the paper; J.B. analyzed data and reviewed the paper; H.K. designed research and reviewed the paper; and J.C. designed research, analyzed data, and wrote the paper.

Conflict-of-interest disclosure: H.K. and J.C. receive research funds from Novartis Pharmaceuticals, whose product was studied in the present work. The other authors declare no competing financial interests.

Correspondence: Jorge Cortes, Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX 77030; e-mail: jcortes@mdanderson.org.

1
Buchdunger
 
E
Cioffi
 
CL
Law
 
N
, et al. 
Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors.
J Pharmacol Exp Ther
2000
, vol. 
295
 (pg. 
139
-
145
)
2
Cortes
 
J
Ault
 
P
Koller
 
C
, et al. 
Efficacy of imatinib mesylate in the treatment of idiopathic hypereosinophilic syndrome.
Blood
2003
, vol. 
101
 (pg. 
4714
-
4716
)
3
Demetri
 
GD
von Mehren
 
M
Blanke
 
CD
, et al. 
Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors.
N Engl J Med
2002
, vol. 
347
 (pg. 
472
-
480
)
4
Gambacorti
 
C
Talpaz
 
M
Sawyers
 
CL
, et al. 
Five year follow-up results of a phase II trial in patients with late chronic phase (L-CP) chronic myeloid leukemia (CML) treated with imatinib who are refractory/intolerant of interferon-{alpha} [abstract].
Blood
2005
, vol. 
106
 pg. 
1089a
 
5
Thomas
 
DA
Faderl
 
S
Cortes
 
J
, et al. 
Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate.
Blood
2004
, vol. 
103
 (pg. 
4396
-
4407
)
6
Yanada
 
M
Takeuchi
 
J
Sugiura
 
I
, et al. 
High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group.
J Clin Oncol
2006
, vol. 
24
 (pg. 
460
-
466
)
7
Druker
 
BJ
Guilhot
 
F
O'Brien
 
SG
, et al. 
Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.
N Engl J Med
2006
, vol. 
355
 (pg. 
2408
-
2417
)
8
Ghofrani
 
HA
Seeger
 
W
Grimminger
 
F
Imatinib for the treatment of pulmonary arterial hypertension.
N Engl J Med
2005
, vol. 
353
 (pg. 
1412
-
1413
)
9
Gottardi
 
M
Manzato
 
E
Gherlinzoni
 
F
Imatinib and hyperlipidemia.
N Engl J Med
2005
, vol. 
353
 (pg. 
2722
-
2723
)
10
Cohen
 
MH
Johnson
 
JR
Pazdur
 
R
U.S Food and Drug Administration drug approval summary: conversion of imatinib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval.
Clin Cancer Res
2005
, vol. 
11
 (pg. 
12
-
19
)
11
Kerkela
 
R
Grazette
 
L
Yacobi
 
R
, et al. 
Cardiotoxicity of the cancer therapeutic agent imatinib mesylate.
Nat Med
2006
, vol. 
12
 (pg. 
908
-
916
)
12
Kannel
 
WB
D'Agostino
 
RB
Silbershatz
 
H
, et al. 
Profile for estimating risk of heart failure.
Arch Intern Med
1999
, vol. 
159
 (pg. 
1197
-
1204
)
13
Kerkela
 
R
Force
 
T
Recent insights into cardiac hypertrophy and left ventricular remodeling.
Curr Heart Fail Rep
2006
, vol. 
3
 (pg. 
14
-
18
)
14
Schellings
 
MW
Baumann
 
M
van Leeuwen
 
RE
, et al. 
Imatinib attenuates end-organ damage in hypertensive homozygous TGR(mRen2)27 rats.
Hypertension
2006
, vol. 
47
 (pg. 
467
-
474
)
15
Lloyd-Jones
 
DM
Larson
 
MG
Leip
 
EP
, et al. 
Lifetime risk for developing congestive heart failure: the Framingham heart study.
Circulation
2002
, vol. 
106
 (pg. 
3068
-
3072
)
16
Thom
 
T
Haase
 
N
Rosamond
 
W
, et al. 
Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation
2006
, vol. 
113
 (pg. 
e85
-
e151
)
17
Levy
 
D
Larson
 
MG
Vasan
 
RS
Kannel
 
WB
Ho
 
KK
The progression from hypertension to congestive heart failure.
JAMA
1996
, vol. 
275
 (pg. 
1557
-
1562
)
18
From
 
AM
Leibson
 
CL
Bursi
 
F
, et al. 
Diabetes in heart failure: prevalence and impact on outcome in the population.
Am J Med
2006
, vol. 
119
 (pg. 
591
-
599
)
19
Condat
 
B
Asselah
 
T
Zanditenas
 
D
, et al. 
Fatal cardiomyopathy associated with pegylated interferon/ribavirin in a patient with chronic hepatitis C.
Eur J Gastroenterol Hepatol
2006
, vol. 
18
 (pg. 
287
-
289
)
20
Harrison
 
CN
Campbell
 
PJ
Buck
 
G
, et al. 
Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia.
N Engl J Med
2005
, vol. 
353
 (pg. 
33
-
45
)
21
Singal
 
PK
Iliskovic
 
N
Doxorubicin-induced cardiomyopathy.
N Engl J Med
1998
, vol. 
339
 (pg. 
900
-
905
)
22
Kantarjian
 
H
Sawyers
 
C
Hochhaus
 
A
, et al. 
Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia.
N Engl J Med
2002
, vol. 
346
 (pg. 
645
-
652
)
23
Sawyers
 
CL
Hochhaus
 
A
Feldman
 
E
, et al. 
Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase 2 study.
Blood
2002
, vol. 
99
 (pg. 
3530
-
3539
)
24
Talpaz
 
M
Silver
 
RT
Druker
 
BJ
, et al. 
Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study.
Blood
2002
, vol. 
99
 (pg. 
1928
-
1937
)
25
Reardon
 
DA
Egorin
 
MJ
Quinn
 
JA
, et al. 
Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme.
J Clin Oncol
2005
, vol. 
23
 (pg. 
9359
-
9368
)
26
Ottmann
 
OG
Druker
 
BJ
Sawyers
 
CL
, et al. 
A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome–positive acute lymphoid leukemias.
Blood
2002
, vol. 
100
 (pg. 
1965
-
1971
)
27
Wyman
 
K
Atkins
 
MB
Prieto
 
V
, et al. 
Multicenter phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy.
Cancer
2006
, vol. 
106
 (pg. 
2005
-
2011
)
28
Kantarjian
 
HM
Larson
 
RA
Guilhot
 
F
, et al. 
Declining rates of adverse events (AEs), rare occurrence of serious AEs (SAEs), and no unexpected long-term side effects at 5 years in patients with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP) initially treated with imatinib (IM) in the International Randomized Study of Interferon vs STI571 (IRIS) [abstract].
Blood
2006
, vol. 
108
 pg. 
2136a
 
29
Hatfield
 
A
Owen
 
S
Pilot
 
PR
In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate” [letter].
Nat Med
2007
, vol. 
13
 pg. 
13
 
30
Rosti
 
G
Martinelli
 
G
Baccarani
 
M
In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate” [letter].
Nat Med
2007
, vol. 
13
 pg. 
15
 
31
Gambacorti
 
C
Tornaghi
 
L
Franceschino
 
A
, et al. 
In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate” [letter].
Nat Med
2007
, vol. 
13
 (pg. 
13
-
14
)
32
Atallah
 
E
Kantarjian
 
H
Cortes
 
J
In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate” [letter].
Nat Med
2007
, vol. 
13
 (pg. 
14
-
16
)
Sign in via your Institution