Abstract
Activating mutations in receptor tyrosine kinase (RTK) genes (including FLT3 and KIT) occur in more than 30% of newly diagnosed patients with acute myeloid leukemia (AML); we and others have speculated that mutations in other TK genes may be present in the remaining 70%. We therefore examined the expression of all annotated RTK and cytoplasmic tyrosine kinase (CTK) genes to prioritize these genes for sequencing. We performed high-throughput re-sequencing of the kinase domains of 24 TK genes (9 RTK and 15 CTK) using amplified genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (“germline”) from 94 patients with de novo AML, and validated positive findings in an additional 94 AML tumor samples (14.4 million base pairs of double-stranded coverage). In addition to previously reported somatic mutations in FLT3, KIT, and JAK2 (which occurred at expected frequencies), we found novel somatic mutations in four patients in JAK1, NTRK1 and DDR1. Unexpectedly, we also identified novel non-synonymous germline sequence changes in 14 genes, including TYK2. We examined frequencies of known polymorphisms in our patients versus controls. We determined that the previously reported JAK3P132T allele is a germline variant that occurs in 19% of normal African Americans. Even when controlling for race, the TYK2G363S allele was found significantly less frequently in AML samples (12/376 alleles, 3.2%) compared to 147 normal controls (27/294 alleles, 9.2%, p=0.0013). Notably, there was loss of heterozygosity (LOH) at TYK2 in 2 patients. Additional population based studies and biologic validation will be required to define the significance of these sequence changes for AML pathogenesis. Lastly, we compared the expression of RTK and CTK genes in AML samples (n=92) to highly enriched normal human CD34+, promyelocyte, or polymorphonuclear neutrophil populations (n=5 each). We found several RTKs (FLT3, KIT, LTK) and CTKs (FYN, LCK, ITK, HCK and FGR) were tightly regulated in normal hematopoietic development but were dysregulated in many AML samples. Taken together, our data suggest that RTK or CTK mutations are not required for AML development but may be disease modifying events. Our data also suggest that germline variants and dysregulated expression of RTK and CTK genes may play significant roles AML pathogenesis.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal