Abstract
HCD122 (formerly known as CHIR-12.12), is a fully human anti-CD40 monoclonal antibody (mAb) currently in Phase I clinical trials for treatment of chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). An IgG1 antibody selected for its potency as an antagonist of the CD40 signaling pathway, HCD122 both inhibits CD40/CD40L-stimulated growth of lymphoma cells ex vivo, and mediates highly effective Antibody Dependent Cell-mediated Cytotoxicity (ADCC) in vitro. As a single agent, HCD122 exhibits potent anti-tumor activity in vivo, in preclinical models of MM, Hodgkin’s lymphoma, Burkitt’s lymphoma, mantle cell lymphoma and diffused large B-cell lymphoma (DLBCL). Although several therapeutic antibodies approved for treatment of Non-Hodgkin’s Lymphoma have clinical activity as single agents, combining these antibodies with standard-of-care chemotherapeutic regimens such as CHOP (cytoxan, vincristine, doxorubicin and prednisone) is proving optimal for both increasing response rates and extending survival, and antibodies currently in clinical development are likely to be used in combination therapies in the future. Therefore the studies reported here examine the effects of combining HCD122 with CHOP, the standard for treatment of high grade NHL, in in vitro and in vivo models of DLBCL. In the xenograft RL model of DLBCL, HCD122 administered intraperitoneally weekly at 1 mg/kg as a single agent, or in combination with CHOP (H-CHOP), and CHOP alone all significantly reduced tumor growth at day 25 when compared to treatment with huIgG1 control antibody (P<0.001). However, tumor growth delay (time to reach tumor size of 500 mm3) was significantly longer for H-CHOP (17.5 days), than for CHOP (8 days) or HCD122 (6 days) (p < 0.001). No toxicity was observed with the H-CHOP combination. Interestingly, at the end of the study (day 35), reduction in tumor growth was significantly greater in the treatment group that received H-CHOP than the groups that received either 10 mg/kg Rituxan plus CHOP (R-CHOP) (p < 0.05) or CHOP alone (p < 0.001). These data show that in this model, treatment with the combination H-CHOP results in greater anti-tumor efficacy than with either modality alone or R-CHOP. We have observed that in vitro, exposure to CD40 Ligand (CD40L) results in aggregation of DLBCL cells, and postulate that interfering with the ability of cancer cells to adhere and interact with each other and their microenvironment may potentiate the effect of chemotherapeutics. To elucidate the mechanism by which the combination of HCD122 and CHOP enhanced efficacy in vivo, we developed an in vitro system to examine the effects of HCD122 on the expression of adhesion molecules in the RL and SU-DHL-4 cell lines. In these studies, HCD122 inhibited CD40L-induced expression of CD54, CD86 and CD95 in both cell lines, as well as aggregation of SU-DHL-4 cells. The combined effect of each of the components of CHOP with HCD122 in three-dimensional spheroid cultures is currently under investigation. These data provide a therapeutic rationale for combination of HCD122 with CHOP in DLBCL clinical trials.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal